MMSegmentation is an open source object segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.
Please refer to get_started.md for installation.
Model | OnnxRuntime | TensorRT | ncnn | PPLNN | OpenVino | Model config |
---|---|---|---|---|---|---|
FCN | Y | Y | Y | Y | Y | config |
PSPNet* | Y | Y | Y | Y | Y | config |
DeepLabV3 | Y | Y | Y | Y | Y | config |
DeepLabV3+ | Y | Y | Y | Y | Y | config |
Fast-SCNN* | Y | Y | N | Y | Y | config |
UNet | Y | Y | Y | Y | Y | config |
ANN* | Y | Y | N | N | N | config |
APCNet | Y | Y | Y | N | N | config |
BiSeNetV1 | Y | Y | Y | N | Y | config |
BiSeNetV2 | Y | Y | Y | N | Y | config |
CGNet | Y | Y | Y | N | Y | config |
DMNet | Y | N | N | N | N | config |
DNLNet | Y | Y | Y | N | Y | config |
EMANet | Y | Y | N | N | Y | config |
EncNet | Y | Y | N | N | Y | config |
ERFNet | Y | Y | Y | N | Y | config |
FastFCN | Y | Y | Y | N | Y | config |
GCNet | Y | Y | N | N | N | config |
ICNet* | Y | Y | N | N | Y | config |
ISANet* | Y | Y | N | N | Y | config |
NonLocal Net | Y | Y | Y | N | Y | config |
OCRNet | Y | Y | Y | N | Y | config |
PointRend* | Y | Y | N | N | N | config |
Semantic FPN | Y | Y | Y | N | Y | config |
STDC | Y | Y | Y | N | Y | config |
UPerNet* | Y | Y | N | N | N | config |
DANet | Y | Y | N | N | Y | config |
Segmenter* | Y | Y | Y | N | Y | config |
SegFormer* | Y | Y | N | N | Y | config |
SETR | Y | N | N | N | Y | config |
CCNet | N | N | N | N | N | config |
PSANet | N | N | N | N | N | config |
DPT | N | N | N | N | N | config |
-
Only
whole
inference mode is supported for all mmseg models. -
PSPNet, Fast-SCNN only support static shape, because nn.AdaptiveAvgPool2d is not supported in most of backends dynamically.
-
For models only supporting static shape, you should use the deployment config file of static shape such as
configs/mmseg/segmentation_tensorrt_static-1024x2048.py
. -
For users prefer deployed models generate probability feature map, put
codebase_config = dict(with_argmax=False)
in deploy configs.