-
Notifications
You must be signed in to change notification settings - Fork 0
/
My CNN.py
68 lines (43 loc) · 1.92 KB
/
My CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
get_ipython().magic(u'config IPCompleter.greedy=True')
#part 1 : building the CNN
#training
classifier=Sequential()
classifier.add(Conv2D(filters=32,kernel_size=(3,3),data_format='channels_last',input_shape=(64,64,3),activation='relu'))
#pooling
classifier.add(MaxPooling2D(pool_size=(2,2)))
#adding a second conv layer
classifier.add(Conv2D(filters=32,kernel_size=(3,3),data_format='channels_last',input_shape=(64,64,3),activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
#flattening
classifier.add(Flatten())
#fully connected layers
classifier.add(Dense(units=128,activation='relu'))
classifier.add(Dense(units=1,activation='sigmoid'))
#compiling the CNN
classifier.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
#part 2 :fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size=(64,64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
classifier.fit_generator(training_set,
steps_per_epoch=8000,
epochs=25,
validation_data=test_set,
validation_steps=2000)