forked from ttengwang/PDVC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopts.py
224 lines (188 loc) · 12.8 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import time
import yaml
import os
import numpy as np
def parse_opts():
parser = argparse.ArgumentParser()
# configure of this run
parser.add_argument('--cfg_path', type=str, required=True, help='config file')
parser.add_argument('--id', type=str, default='', help='id of this run. Results and logs will saved in this folder ./save/id')
parser.add_argument('--gpu_id', type=str, nargs='+', default=[])
parser.add_argument('--disable_tqdm', action='store_true')
parser.add_argument('--seed', type=int, default=777)
parser.add_argument('--random_seed', action='store_true', help='choose a random seed from {1,...,1000}')
parser.add_argument('--disable_cudnn', type=int, default=0, help='disable cudnn may solve some unknown bugs')
parser.add_argument('--debug', action='store_true', help='using mini-dataset for fast debugging')
parser.add_argument('--device', default='cuda', choices=['cpu', 'cuda'], help='device to use for training / testing')
# ***************************** INPUT DATA PATH *****************************
parser.add_argument('--train_caption_file', type=str,
default='data/anet/captiondata/train_modified.json', help='')
parser.add_argument('--invalid_video_json', type=str, nargs='+', default=[])
parser.add_argument('--val_caption_file', type=str, default='data/anet/captiondata/val_1.json')
parser.add_argument('--visual_feature_folder', type=str, default='data/anet/resnet_bn')
parser.add_argument('--gt_file_for_auc', type=str, nargs='+', default='data/anet/captiondata/val_all.json')
parser.add_argument('--gt_file_for_eval', type=str, nargs='+', default=['data/anet/captiondata/val_1.json', 'data/anet/captiondata/val_2.json'])
parser.add_argument('--gt_file_for_para_eval', type=str, nargs='+', default= ['data/anet/captiondata/para/anet_entities_val_1_para.json', 'data/anet/captiondata/para/anet_entities_val_2_para.json'])
parser.add_argument('--dict_file', type=str, default='data/anet/vocabulary_activitynet.json', help='')
parser.add_argument('--criteria_for_best_ckpt', type=str, default='dvc', choices=['dvc', 'pc'], help='for dense video captioning, use soda_c + METEOR as the criteria'
'for paragraph captioning, choose the best para_METEOR+para_CIDEr+para_BLEU4')
parser.add_argument('--visual_feature_type', type=str, default='c3d', choices=['c3d', 'resnet_bn', 'resnet'])
parser.add_argument('--feature_dim', type=int, default=500, help='dim of frame-level feature vector')
parser.add_argument('--start_from', type=str, default='', help='id of the run with incompleted training')
parser.add_argument('--start_from_mode', type=str, choices=['best', 'last'], default="last")
parser.add_argument('--pretrain', type=str, choices=['full', 'encoder', 'decoder'])
parser.add_argument('--pretrain_path', type=str, default='', help='path of .pth')
# ***************************** DATALOADER OPTION *****************************
parser.add_argument('--nthreads', type=int, default=4)
parser.add_argument('--data_norm', type=int, default=0)
parser.add_argument('--data_rescale', type=int, default=1)
parser.add_argument('--feature_sample_rate', type=int, default=1)
parser.add_argument('--train_proposal_sample_num', type=int,
default=24,
help='number of sampled proposals (or proposal sequence), a bigger value may be better')
parser.add_argument('--gt_proposal_sample_num', type=int, default=10)
# parser.add_argument('--train_proposal_type', type=str, default='', choices=['gt', 'learnt_seq', 'learnt'])
# ***************************** Caption Decoder *****************************
parser.add_argument('--vocab_size', type=int, default=5747)
parser.add_argument('--wordRNN_input_feats_type', type=str, default='C', choices=['C', 'E', 'C+E'],
help='C:clip-level features, E: event-level features, C+E: both')
parser.add_argument('--caption_decoder_type', type=str, default="light",
choices=['none','light', 'standard'])
parser.add_argument('--rnn_size', type=int, default=512,
help='size of the rnn in number of hidden nodes in each layer')
parser.add_argument('--num_layers', type=int, default=1, help='number of layers in the RNN')
parser.add_argument('--input_encoding_size', type=int, default=512,
help='the encoding size of each token in the vocabulary')
parser.add_argument('--att_hid_size', type=int, default=512, help='the hidden size of the attention MLP')
parser.add_argument('--drop_prob', type=float, default=0.5, help='strength of dropout in the Language Model RNN')
parser.add_argument('--max_caption_len', type=int, default=30, help='')
# ***************************** Transformer *****************************
parser.add_argument('--hidden_dim', type=int, default=512)
parser.add_argument('--num_queries', type=int, default=100)
parser.add_argument('--hidden_dropout_prob', type=float, default=0.5)
parser.add_argument('--layer_norm_eps', type=float, default=1e-12)
parser.add_argument('--caption_cost_type', type=str, default='loss')
parser.add_argument('--set_cost_caption', type=float, default=0)
parser.add_argument('--set_cost_class', type=float, default=1)
parser.add_argument('--set_cost_bbox', type=float, default=5)
parser.add_argument('--set_cost_giou', type=float, default=2)
parser.add_argument('--cost_alpha', type=float, default=0.25)
parser.add_argument('--cost_gamma', type=float, default=2)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--count_loss_coef', default=0, type=float)
parser.add_argument('--caption_loss_coef', default=0, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument('--num_classes', type=int, default=1)
parser.add_argument('--dec_layers', type=int, default=6)
parser.add_argument('--enc_layers', type=int, default=6)
parser.add_argument('--transformer_ff_dim', type=int, default=2048)
parser.add_argument('--transformer_dropout_prob', type=float, default=0.1)
parser.add_argument('--frame_embedding_num', type=int, default = 100)
parser.add_argument('--sample_method', type=str, default = 'nearest', choices=['nearest', 'linear'])
parser.add_argument('--fix_xcw', type=int, default=0)
# ***************************** OPTIMIZER *****************************
parser.add_argument('--training_scheme', type=str, default='all', choices=['cap_head_only', 'no_cap_head', 'all'])
parser.add_argument('--epoch', type=int, default=30)
parser.add_argument('--batch_size', type=int, default=1, help='batch_size')
parser.add_argument('--batch_size_for_eval', type=int, default=1, help='')
parser.add_argument('--grad_clip', type=float, default=100., help='clip gradients at this value')
parser.add_argument('--optimizer_type', type=str, default='adam')
parser.add_argument('--weight_decay', type=float, default=0, help='weight_decay')
parser.add_argument('--lr', type=float, default=1e-4, help='1e-4 for resnet feature and 5e-5 for C3D feature')
parser.add_argument('--learning_rate_decay_start', type=float, default=8)
parser.add_argument('--learning_rate_decay_every', type=float, default=3)
parser.add_argument('--learning_rate_decay_rate', type=float, default=0.5)
# ***************************** SAVING AND LOGGING *****************************
parser.add_argument('--min_epoch_when_save', type=int, default=-1)
parser.add_argument('--save_checkpoint_every', type=int, default=1)
parser.add_argument('--save_all_checkpoint', action='store_true')
parser.add_argument('--save_dir', type=str, default='save', help='directory to store checkpointed models')
# ***************************** For Deformable DETR *************************************
parser.add_argument('--lr_backbone_names', default=["None"], type=str, nargs='+')
parser.add_argument('--lr_backbone', default=2e-5, type=float)
parser.add_argument('--lr_proj', default=0, type=int)
parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=0.1, type=float)
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--transformer_input_type', default='queries', choices=['gt_proposals', 'learnt_proposals', 'queries'])
# * Backbone
parser.add_argument('--backbone', default=None, type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--position_embedding_scale', default=2 * np.pi, type=float,
help="position / size * scale")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
parser.add_argument('--share_caption_head', type = int ,default=1)
parser.add_argument('--cap_nheads', default=8, type=int)
parser.add_argument('--cap_dec_n_points', default=4, type=int)
parser.add_argument('--cap_num_feature_levels', default=4, type=int)
parser.add_argument('--disable_mid_caption_heads', action='store_true')
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Loss coefficients
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
parser.add_argument('--focal_gamma', default=2., type=float)
#***************************** Event counter *****************************
parser.add_argument('--max_eseq_length', default=10, type=int)
parser.add_argument('--lloss_gau_mask', default=1, type=int)
parser.add_argument('--lloss_beta', default=1, type=float)
# scheduled sampling
parser.add_argument('--scheduled_sampling_start', type=int, default=-1,
help='at what iteration to start decay gt probability')
parser.add_argument('--basic_ss_prob', type=float, default=0, help='initial ss prob')
parser.add_argument('--scheduled_sampling_increase_every', type=int, default=2,
help='every how many iterations thereafter to gt probability')
parser.add_argument('--scheduled_sampling_increase_prob', type=float, default=0.05,
help='How much to update the prob')
parser.add_argument('--scheduled_sampling_max_prob', type=float, default=0.25,
help='Maximum scheduled sampling prob.')
# reranking
parser.add_argument('--ec_alpha', type=float, default=0.3)
args = parser.parse_args()
if args.cfg_path:
import_cfg(args.cfg_path, vars(args))
if args.random_seed:
import random
seed = int(random.random() * 1000)
new_id = args.id + '_seed{}'.format(seed)
save_folder = os.path.join(args.save_dir, new_id)
while os.path.exists(save_folder):
seed = int(random.random() * 1000)
new_id = args.id + '_seed{}'.format(seed)
save_folder = os.path.join(args.save_dir, new_id)
args.id = new_id
args.seed = seed
if args.debug:
args.id = 'debug_' + time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime())
args.save_checkpoint_every = 1
args.shuffle = 0
if args.caption_decoder_type == 'none':
assert args.caption_loss_coef == 0
assert args.set_cost_caption == 0
print("args.id: {}".format(args.id))
return args
def import_cfg(cfg_path, args):
with open(cfg_path, 'r') as handle:
yml = yaml.load(handle, Loader=yaml.FullLoader)
if 'base_cfg_path' in yml:
base_cfg_path = yml['base_cfg_path']
import_cfg(base_cfg_path, args)
args.update(yml)
pass
if __name__ == '__main__':
opt = parse_opts()
print(opt)