-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscheduler.py
434 lines (364 loc) · 20.1 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import random
import logging
import pandas as pd
from deap import base, creator, tools
from datetime import datetime, timedelta
from LoadData import tasks, resources
from TypeDefine import Resource, Task, ResourceSelectionStrategy, TaskSortStrategy, TaskType
from typing import List
from openpyxl import load_workbook
from openpyxl.styles import Alignment
random.seed(0)
class Scheduler(object):
def __init__(self, tasks: List[Task], resources: List[Resource]):
self.tasks = tasks # tasks:level 1,但是记录了 child task
self.resources = resources
def _schedule(self, select_strategy: ResourceSelectionStrategy):
# BOM只有两层 -> 简单处理
execute_list = []
for task in self.tasks:
if task.children_task:
execute_list.extend([child for child in task.children_task])
execute_list.append(task)
for task in execute_list:
self._scheduling_one_task(task, select_strategy)
for task in execute_list:
for op in task.craft_paths:
if not op.assigned_resource or not op.assigned_start_time or not op.assigned_end_time:
assert 0 == 1
def based_schedule(self, select_strategy: ResourceSelectionStrategy, sort_stragety: TaskSortStrategy | None):
"""
根据事先定义好的顺序按照一定的资源选择策略进行时间推导
:return:
"""
self._clear()
for resource in self.resources:
resource.local_time = datetime(2024, 9, 1)
if sort_stragety == TaskSortStrategy.PLANENDDATE:
self.tasks_sort()
elif sort_stragety == TaskSortStrategy.CR:
self.tasks_sort_by_CR()
else:
# self.tasks_sort_by_OPT() # deap 优化不可用,设置为pass
pass
self._schedule(select_strategy)
def tasks_sort(self):
self.tasks = sorted(self.tasks, key=lambda x: x.planned_start_date)
def tasks_sort_by_CR(self):
self.tasks = sorted(self.tasks, key=lambda x: x.cr)
def print_gantt(self):
# data = []
#
# # 添加 tqdm 进度条来跟踪数据转换进度
# for task in self.tasks:
# for op in task.craft_paths:
# data.append({
# 'Task': task.id,
# 'Operation': op.name,
# 'Start': op.assigned_start_time,
# 'Finish': op.assigned_end_time,
# 'Resource': op.assigned_resource
# })
#
# df = pd.DataFrame(data)
#
# # 使用 plotly 创建甘特图
# fig = px.timeline(df, x_start="Start", x_end="Finish", y="Task", color="Resource", text="Operation")
# fig.update_yaxes(categoryorder="total ascending")
# fig.update_layout(
# title="Gantt Chart of Tasks",
# xaxis_title="Time",
# yaxis_title="Task",
# showlegend=True
# )
# 显示图表
# fig.show(renderer='svg')
# fig.show(renderer='webgl')
# project = gantt.Project(name="Production Schedule")
#
# # 遍历任务并添加到项目中
# for task in self.tasks:
# for operation in task.craft_paths:
# # 创建每个操作的甘特任务
# gantt_task = gantt.Task(
# name=f"{task.id} - {operation.name}",
# start=operation.assigned_start_time.date(),
# stop=operation.assigned_end_time.date(),
# resources=operation.assigned_resource,
# percent_done=100
# )
# # 将任务添加到项目中
# project.add_task(gantt_task)
#
# # 生成甘特图
# project.make_svg_for_tasks(filename="gantt_chart.svg", today=datetime.now().date())
# print("甘特图已保存为 gantt_chart.svg")
pass
def cal_kpi(self) -> tuple[dict[Resource, float], dict[Task, timedelta]]:
# 资源生产效率
resource_efficiency: dict[Resource, float] = {}
for resource in self.resources:
resource_efficiency[resource] = 0
for resource in self.resources:
start: datetime = datetime(2024, 9, 1)
end: datetime = resource.local_time
duration: timedelta = timedelta(seconds=0)
for operation in resource.operation_list:
duration += operation.assigned_end_time - operation.assigned_start_time
if end == start:
continue
resource_efficiency[resource] = duration / (end - start)
# 任务延期情况
task_delay: dict[Task, timedelta] = {}
all_tasks: List[Task] = []
all_tasks.extend(self.tasks)
for task in self.tasks:
if task.children_task:
all_tasks.extend(task.children_task)
for task in all_tasks:
task_delay[task] = task.delay
return resource_efficiency, task_delay
def out_put(self, display: bool = False, output_file: bool = False, path=None):
if display:
header_format = "{:<10} {:<5} {:<25} {:<19} {:<19}"
row_format = "{:<10} {:<5} {:<25} {:<19} {:<19}"
# 打印标题
print(header_format.format("作业单号", "工序号", "工序名称", "开始时间", "结束时间"))
print("=" * 100) # 分隔线
for task in self.tasks:
for i, operation in enumerate(task.craft_paths, 1):
start_time = operation.assigned_start_time.strftime('%Y-%m-%d %H:%M')
end_time = operation.assigned_end_time.strftime('%Y-%m-%d %H:%M')
print(row_format.format(task.id, i, operation.name, start_time, end_time))
# 计算并输出平均资源效率、总延期时间和延期任务数量
efficient, delays = self.cal_kpi()
average_efficiency = sum(efficient.values()) / len(efficient) if efficient else 0
total_delay_hours = sum(delays.values())
delayed_tasks_count = sum(1 for value in delays.values() if value > 0)
print(f"{'平均资源效率:':<20} {average_efficiency:>10.2f}")
print(f"{'任务总延期:':<20} {total_delay_hours:>10.2f} 小时")
print(f"{'延期任务数量:':<20} {delayed_tasks_count:>10}")
print("-" * 100)
if output_file:
# 资源视角 gantt
resource_gantt_writer = pd.ExcelWriter(path + 'resource_gantt.xlsx', engine='openpyxl')
for resource in self.resources:
data = {
"作业单号": [op.parent_task.id for op in resource.operation_list],
"工序名称": [op.name for op in resource.operation_list],
"物料编码": [op.material_id for op in resource.operation_list],
"开始时间": [op.assigned_start_time for op in resource.operation_list],
"结束时间": [op.assigned_end_time for op in resource.operation_list],
"工作时间(时)": [round((op.assigned_end_time - op.assigned_start_time).total_seconds() / 3600, 2) for op in resource.operation_list],
"全部可用资源": [" ".join([re.name for re in op.available_resource]) for op in resource.operation_list]
}
df = pd.DataFrame(data)
df.to_excel(resource_gantt_writer, sheet_name=resource.name, index=False)
resource_gantt_writer._save()
# 作业单视角 gantt
task_gantt_writer = pd.ExcelWriter(path + 'task_gantt.xlsx', engine='openpyxl')
all_tasks: List[Task] = []
all_tasks.extend(self.tasks)
for task in self.tasks:
if task.children_task:
all_tasks.extend(task.children_task)
all_tasks = sorted(all_tasks, key=lambda x: x.craft_paths[-1].assigned_start_time)
type_dict = {
TaskType.PARENT: "父级MO",
TaskType.CHILD: "子级任务"
}
data = {
"作业单号": [task.id for task in all_tasks],
"物料编码": [task.material_id for task in all_tasks],
"关联类型": [type_dict[task.type] for task in all_tasks],
"生产数量": [task.uncleared_quantity for task in all_tasks],
"子任务": [",".join([str(child.id) for child in task.children_task]) for task in all_tasks],
"开始时间": [task.craft_paths[0].assigned_start_time for task in all_tasks],
"结束时间": [task.craft_paths[-1].assigned_end_time for task in all_tasks],
}
df = pd.DataFrame(data)
df.to_excel(task_gantt_writer, sheet_name="作业单", index=False)
task_gantt_writer._save()
# 工序视角: 先计算op 的分布,然后再关联op 的信息
if path == "opt_out/":
operation_gantt_writer = pd.ExcelWriter(path + 'opt_operation_gantt.xlsx', engine='openpyxl')
else:
operation_gantt_writer = pd.ExcelWriter(path + 'operation_gantt.xlsx', engine='openpyxl')
date_range = pd.date_range(datetime(2024, 9, 1).date(), datetime(2027, 12, 31).date()) # 假定静态,时间长度不会超过这个范围
df = pd.DataFrame(index=[op.id for task in all_tasks for op in task.craft_paths], columns=sorted(date_range, key=lambda x: x))
# 填充df,计算工序数量
for task in all_tasks:
for op in task.craft_paths:
total_quantity = op.parent_task.uncleared_quantity
start_date = op.assigned_start_time.date()
end_date = op.assigned_end_time.date()
if start_date == end_date:
df.loc[op.id, pd.to_datetime(start_date)] = total_quantity
continue
op_range = pd.date_range(start_date, end_date)
quantity_range = []
for i, date in enumerate(op_range):
if i == 0:
first_day_working_minutes = (date + timedelta(days=1) - op.assigned_start_time).total_seconds() / 60
first_day_amount = round(first_day_working_minutes / op.minutes_per_bear * op.quantity_per_bear)
quantity_range.append(first_day_amount)
elif i == len(op_range) - 1:
last_day_working_minutes = (op.assigned_end_time - date).total_seconds() / 60
last_day_amount = round(last_day_working_minutes / op.minutes_per_bear * op.quantity_per_bear)
quantity_range.append(last_day_amount)
else:
working_minutes = timedelta(days=1).total_seconds() / 60
amount = round(working_minutes / op.minutes_per_bear * op.quantity_per_bear)
quantity_range.append(amount)
for quantity, date in zip(quantity_range, op_range):
df.loc[op.id, date] = quantity
# debug
# filtered_df = df.loc[df.index == '压铸']
# non_empty_filtered_df = filtered_df.dropna(how='all')
# print(non_empty_filtered_df)
# 补充工序信息
added_info = {
"物料": [op.parent_task.material_id for task in all_tasks for op in task.craft_paths],
"物料描述": [op.parent_task.material_describe for task in all_tasks for op in task.craft_paths],
"作业单号": [op.parent_task.id for task in all_tasks for op in task.craft_paths],
"需求日期": [pd.to_datetime(op.parent_task.planned_end_date) for task in all_tasks for op in task.craft_paths],
"工序编码": [op.order for task in all_tasks for op in task.craft_paths],
"工序名称": [op.name for task in all_tasks for op in task.craft_paths],
"设备": [op.assigned_resource.name for task in all_tasks for op in task.craft_paths],
"生产数量": [op.parent_task.uncleared_quantity for task in all_tasks for op in task.craft_paths]
}
added_info_df = pd.DataFrame(added_info)
added_info_df = added_info_df.reset_index(drop=True)
df.columns = pd.to_datetime(df.columns).date
df = df.reset_index(drop=True)
df = pd.concat([added_info_df, df], axis=1) # 合并
df_sorted = df.sort_values(by=['需求日期', "作业单号", '工序编码']) # 排序
df_sorted.reset_index(drop=True, inplace=True)
df_sorted.to_excel(operation_gantt_writer, sheet_name="工序明细", index=True)
operation_gantt_writer._save()
# 重新打开: 设置列宽和对齐
excel_path = operation_gantt_writer
wb = load_workbook(excel_path)
ws = wb.active # 获取第一个工作表
# 遍历所有列,设置宽度为20
for col in ws.columns:
max_column = col[0].column_letter # 获取列的字母编号
ws.column_dimensions[max_column].width = 20 # 设置列宽为20
for cell in col:
cell.alignment = Alignment(horizontal='left') # 设置左对齐
# 保存修改后的 Excel 文件
wb.save(excel_path)
def _clear(self):
"""
清除所有任务和资源的状态
:return:
"""
to_removed = []
for task in self.tasks:
if task.uncleared_quantity == 0:
to_removed.append(task)
for op in task.craft_paths:
op.assigned_start_time = None
op.assigned_end_time = None
op.assigned_resource = None
for resource in self.resources:
resource.operation_list.clear()
for task in to_removed:
self.tasks.remove(task)
def tasks_sort_by_OPT(self):
"""
使用deap的简单排序,已经证明不可行
"""
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("indices", random.sample, range(len(self.tasks)), len(self.tasks)) # 随机生成一个排列
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.indices)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", self._objective)
toolbox.register("mate", tools.cxOnePoint) # 有序交叉 cxOrdered
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.1) # 变异操作 mutShuffleIndexes
toolbox.register("select", tools.selTournament, tournsize=3) # selTournament
def optimize_permutation_sequence(n_generations=100, population_size=100, cxpb=0.1, mutpb=0.1):
# 初始化种群
population = toolbox.population(n=population_size)
# 遗传算法主循环
for generation in range(n_generations):
offspring = toolbox.select(population, len(population))
offspring = list(map(toolbox.clone, offspring))
# 应用交叉
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < cxpb:
toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
# 应用变异
for mutant in offspring:
if random.random() < mutpb:
toolbox.mutate(mutant)
del mutant.fitness.values
# 评估适应度
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# 更新种群
population[:] = offspring
# 输出当前代的最优适应度
fits = [ind.fitness.values[0] for ind in population]
print(f"Generation {generation}: Min fitness: {min(fits):.2f}, Avg fitness: {sum(fits) / len(population):.2f}")
# 返回最佳个体和其适应度
best_individual = tools.selBest(population, 1)[0]
return best_individual, best_individual.fitness.values[0]
best_seq, best_fitness = optimize_permutation_sequence()
print("优化后的序列:", best_seq)
print("优化后的适应度:", best_fitness)
def _objective(self, seq: list[int]):
self.tasks = [self.tasks[i] for i in seq]
self._schedule(ResourceSelectionStrategy.GREEDY) # 默认贪心
efficient, delay = self.cal_kpi()
return sum(delay.values()),
def _scheduling_one_task(self, task: Task, _stragty: ResourceSelectionStrategy):
"""工序接续关系全部采用SSEE,task之间使用ES"""
constraint = None
if task.type == TaskType.PARENT and task.children_task:
constraint = max([op.assigned_end_time for child in task.children_task for op in child.craft_paths])
for i, job in enumerate(task.craft_paths):
if _stragty == ResourceSelectionStrategy.RANDOM:
selected_resource: Resource = random.choice(job.available_resource)
else:
selected_resource: Resource = min(job.available_resource, key=lambda r: r.local_time)
selected_resource.operation_list.append(job)
if i == 0:
if constraint is None:
job.assigned_start_time = selected_resource.local_time
else:
# parent的开始时间 TODO:检查parent 开始是否满足约束,由于毛坯加工非常快,这里暂定假设满足
job.assigned_start_time = max(constraint, selected_resource.local_time)
else:
job.assigned_start_time = max(task.craft_paths[i - 1].assigned_start_time + timedelta(hours=1), selected_resource.local_time)
job.assigned_end_time = job.assigned_start_time + timedelta(minutes=(task.uncleared_quantity * job.minutes_per_bear) / job.quantity_per_bear)
# 若不满足SSEE,同时修正开始和结束时间
if i > 0 and job.assigned_end_time < task.craft_paths[i - 1].assigned_end_time:
job.assigned_start_time = task.craft_paths[i - 1].assigned_end_time + (task.craft_paths[i - 1].assigned_end_time - job.assigned_end_time)
job.assigned_end_time = job.assigned_start_time + timedelta(minutes=(task.uncleared_quantity * job.minutes_per_bear) / job.quantity_per_bear)
job.assigned_resource = selected_resource
# 更新资源时间
selected_resource.local_time = job.assigned_end_time
assert job.assigned_start_time and job.assigned_resource, "Start time or resource is not assigned"
if __name__ == '__main__':
solver = Scheduler(resources=resources, tasks=tasks)
# 不同模式下的kpi对比
resource_selecter = [ResourceSelectionStrategy.GREEDY, ResourceSelectionStrategy.RANDOM]
task_sorter = [TaskSortStrategy.CR, TaskSortStrategy.PLANENDDATE]
# for first_mode in resource_selecter:
# for second_mode in task_sorter:
# print(f"资源选择策略: {first_mode}, 当前任务排序策略: {second_mode}")
# solver.based_schedule(select_strategy=first_mode, sort_stragety=second_mode)
# solver.out_put(display=False,output_file=False)
solver.based_schedule(select_strategy=ResourceSelectionStrategy.GREEDY, sort_stragety=TaskSortStrategy.PLANENDDATE)
solver.out_put(display=False, output_file=False, path="output/")
# 输出资源利用率
# efficicent, delay = solver.cal_kpi()
# for key,val in efficicent.items():
# print(f"资源{key.name}的利用率: {val}")