-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
448 lines (390 loc) · 23.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# %%
from transformers import AutoTokenizer, AutoConfig, AutoModel
import string
from sklearn import metrics
import random
import torch.nn.functional as F
from torch.utils.data import DataLoader
from src.data import parse_episodes, collate_fn_train, parse_episodes_from_index
import os
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from torch.cuda.amp import autocast, GradScaler
import torch
import torch.nn as nn
import wandb
import argparse
from src.models.dlmnav_sie import Encoder
import numpy as np
from src.models.util import set_seed
from src.util import get_f1, get_f1_macro,FGM,FreeLB
from tqdm import tqdm
import sys
import time
import os
import pickle
os.environ["CUDA_VISIBLE_DEVICES"]="3"
if __name__ == "__main__":
debug=True
device_debug='cuda'
random_string = ''.join(random.SystemRandom().choice(string.ascii_letters + string.digits) for _ in range(10))
print(random_string)
time_begin=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
parser =argparse.ArgumentParser()
parser.add_argument("--nota_transform_multi",type=bool,default=True,help="use nota_transform_multi loss")
parser.add_argument("--freelb",type=bool,default=False,help="use freelb loss")
parser.add_argument("--support_proto_counts",type=int,default=10,help="counts of support proto")
parser.add_argument("--adv_K", type=int, default=3, help="number of steps for adversarial training")
parser.add_argument("--adv_lr", type=float, default=1.5e-1, help="learning rate for adversarial training")
parser.add_argument("--adv_max_norm", type=float, default=4.5e-1, help="max norm for adversarial training")
parser.add_argument("--adv_init_mag", type=float, default=0, help="magnitude for initialization")
parser.add_argument("--adv_norm_type", type=str, default="l2", help="norm type for adversarial training")
parser.add_argument("--epsilon", type=float, default=0.2, help="epsilon for AT")
parser.add_argument("--dropout", type=float, default=0., help="dropout")
parser.add_argument("--weight_decay", type=float, default=0., help="weight decay")
parser.add_argument("--seed_model", type=int, default=123, help="random seed for model")
parser.add_argument("--nota_length", type=int, default=10, help="max length of nota")
parser.add_argument("--gamma_pos", type=float, default=1, help="gamma for positive samples")
parser.add_argument("--single_lr", type=bool, default=True, help="use single learning rate for all layers")
parser.add_argument("--mention_combination", type=str, default="mean", help="The way mention is combined when calculating entity representation(logsumexp,Parameter,mean)")
parser.add_argument("--use_markers", type=bool, default=True, help="use entity marker")
parser.add_argument("--seed_data", type=int, default=123, help="random seed for data")
parser.add_argument("--num_epochs", type=int, default=1, help="number of epochs to train")
parser.add_argument("--support_docs_train", type=int, default=3, help="number of support documents during training")
parser.add_argument("--support_docs_eval", type=int, default=3, help="number of support documents during eval")
parser.add_argument("--query_docs_train", type=int, default=1, help="number of query documents (train)")
parser.add_argument("--query_docs_eval", type=int, default=1, help="number of query documents (eval)")
parser.add_argument("--samples_per_ep", type=int, default=2000, help="number of samples per epoch")
parser.add_argument("--samples_data_train", type=int, default=50000, help="number of training episodes to generate")
parser.add_argument("--samples_data_dev", type=int, default=500, help="number of dev episodes to generate")
parser.add_argument("--samples_data_test", type=int, default=10000, help="number of test episodes to generate")
parser.add_argument("--balancing_train", type=str, default="single", help="balancing (hard, soft, single)")
parser.add_argument("--balancing_eval", type=str, default="single", help="balancing (hard, soft, single)")
parser.add_argument("--dataset", type=str, default="FREDo", help="dataset (FREDo, ReFREDo)")
parser.add_argument("--eval_batch_size", type=int, default=2, help="eval batch size")
parser.add_argument("--train_batch_size", type=int, default=2, help="training batch size")
parser.add_argument("--warmup_epochs", type=int, default=1, help="warmup epochs")
parser.add_argument("--learning_rate", type=float, default=2e-6, help="learning rate")
parser.add_argument("--loss", type=str, default="atloss", help="loss function")
parser.add_argument("--ensure_positive", type=bool, default=True, help="ensure positive example query")
parser.add_argument("--load_checkpoint", type=str, default="checkpoints/FREDo_HQBNxsESIs.pt", help="path to checkpoint")
parser.add_argument("--project", type=str, default="FREDo", help="project name for wandb")
parser.add_argument("--random_string", type=str, default=random_string, help="random string for wandb")
args = parser.parse_args()
if not debug:
wandb.init(project=args.project)
wandb.config.update(args)
wandb.config.identifier = random_string
torch.backends.cudnn.enable =True,
torch.backends.cudnn.benchmark = True
os.environ["TOKENIZERS_PARALLELISM"] = "false"
print('before tokenizer')
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
train_only = False
markers = args.use_markers
samples_per_epoch = args.samples_per_ep
n_epochs = args.num_epochs
train_batch_size = args.train_batch_size
warmup_epochs = args.warmup_epochs
learning_rate = args.learning_rate
print('before dataloader')
print(random_string)
if args.num_epochs != 0:
if os.path.exists('data_advance/'+args.dataset+"/"+args.balancing_train+'/training_dataset_{0}doc.pkl'.format(args.support_docs_eval)):
print('exit train')
with open('data_advance/'+args.dataset+"/"+args.balancing_train+'/training_dataset_{0}doc.pkl'.format(args.support_docs_eval), 'rb') as f:
training_episodes = pickle.load(f)
else:
print('not exit train')
training_episodes = parse_episodes("data/"+args.dataset+"/train.json", tokenizer, K=args.support_docs_train, n_queries=args.query_docs_train, n_samples=args.samples_data_train, markers=args.use_markers, balancing=args.balancing_train, seed=args.seed_data, ensure_positive=args.ensure_positive, cache="data_cache/"+args.dataset+"/"+args.balancing_train)
with open('data_advance/'+args.dataset+"/"+args.balancing_train+'/training_dataset_{0}doc.pkl'.format(args.support_docs_eval),'wb') as p:
pickle.dump(training_episodes,p)
if os.path.exists('data_advance/'+args.dataset+"/"+args.balancing_eval+'/dev_dataset_{0}doc.pkl'.format(args.support_docs_eval)):
print('exit dev')
with open('data_advance/'+args.dataset+"/"+args.balancing_eval+'/dev_dataset_{0}doc.pkl'.format(args.support_docs_eval), 'rb') as f:
dev_episodes = pickle.load(f)
else:
print('not exit dev')
dev_episodes = parse_episodes("data/"+args.dataset+"/dev.json", tokenizer, K=args.support_docs_eval, n_queries=args.query_docs_eval, n_samples=args.samples_data_dev, markers=args.use_markers, balancing=args.balancing_eval, seed=args.seed_data, ensure_positive=args.ensure_positive, cache="data_cache/"+args.dataset+"/"+args.balancing_eval)
with open('data_advance/'+args.dataset+"/"+args.balancing_eval+'/dev_dataset_{0}doc.pkl'.format(args.support_docs_eval),'wb') as p:
pickle.dump(dev_episodes,p)
if os.path.exists('data_advance/'+args.dataset+'/indomain_dataset_{0}doc.pkl'.format(args.support_docs_eval)):
print('indomain exit')
with open('data_advance/'+args.dataset+'/indomain_dataset_{0}doc.pkl'.format(args.support_docs_eval), 'rb') as f:
indomain_test_episodes = pickle.load(f)
else:
print('indomain not exit')
indomain_test_episodes = parse_episodes_from_index("data/"+args.dataset+"/test_docred.json", "data/"+args.dataset+"/test_in_domain_{0}_doc_indices.json".format(args.support_docs_eval), tokenizer, markers=args.use_markers, cache="data_cache/"+args.dataset+"/"+args.balancing_eval)
with open('data_advance/'+args.dataset+'/indomain_dataset_{0}doc.pkl'.format(args.support_docs_eval),'wb') as p:
pickle.dump(indomain_test_episodes,p)
if os.path.exists('data_advance/'+args.dataset+'/scierc_dataset_{0}doc.pkl'.format(args.support_docs_eval)):
print('scierc exit')
with open('data_advance/'+args.dataset+'/scierc_dataset_{0}doc.pkl'.format(args.support_docs_eval), 'rb') as f:
scierc_test_episodes = pickle.load(f)
else:
print('scierc not exit')
scierc_test_episodes = parse_episodes_from_index("data/"+args.dataset+"/test_scierc.json", "data/"+args.dataset+"/test_cross_domain_{0}_doc_indices.json".format(args.support_docs_eval), tokenizer, markers=args.use_markers, cache="data_cache/"+args.dataset+"/"+args.balancing_eval)
with open('data_advance/'+args.dataset+'/scierc_dataset_{0}doc.pkl'.format(args.support_docs_eval),'wb') as p:
pickle.dump(scierc_test_episodes,p)
torch.use_deterministic_algorithms(True)
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
g = torch.Generator()
g.manual_seed(args.seed_data)
set_seed(args.seed_model)
if args.num_epochs != 0:
train_loader = DataLoader(
training_episodes,
batch_size=train_batch_size,
shuffle=True,
collate_fn=collate_fn_train, num_workers=4, drop_last=True, generator=g)
else:
train_loader = []
if not train_only and args.num_epochs != 0:
dev_loader = DataLoader(
dev_episodes,
batch_size=args.eval_batch_size,
shuffle=False,
collate_fn=collate_fn_train, num_workers=4, drop_last=False)
indomain_test_loader = DataLoader(
indomain_test_episodes,
batch_size=args.eval_batch_size,
shuffle=False,
collate_fn=collate_fn_train, num_workers=4, drop_last=False)
scierc_test_loader = DataLoader(
scierc_test_episodes,
batch_size=args.eval_batch_size,
shuffle=False,
collate_fn=collate_fn_train, num_workers=4, drop_last=False)
lm_config = AutoConfig.from_pretrained(
"bert-base-cased",
num_labels=10,
)
lm_model = AutoModel.from_pretrained(
"bert-base-cased",
from_tf=False,
config=lm_config,
)
encoder = Encoder(
config=lm_config,
model=lm_model,
cls_token_id=tokenizer.convert_tokens_to_ids(tokenizer.cls_token),
sep_token_id=tokenizer.convert_tokens_to_ids(tokenizer.sep_token),
markers=markers,
device=device_debug,
combination=args.mention_combination,
gamma_pos=args.gamma_pos,
nota_length=args.nota_length,
dropout=args.dropout,
support_proto_counts=args.support_proto_counts,
nota_transform_multi=args.nota_transform_multi,
)
encoder.to(device_debug)
if args.load_checkpoint is not None:
print(f'loading model from {args.load_checkpoint}')
encoder.load_state_dict(torch.load(f"{args.load_checkpoint}"))
total_params = sum(p.numel() for p in encoder.parameters())
print(f"Total parameters: {total_params}")
pretrained = encoder.model.parameters()
pretrained_names = [f'model.{k}' for (k, v) in encoder.model.named_parameters()]
new_params= [k for k, v in encoder.named_parameters() if k not in pretrained_names]
optimizer_grouped_parameters = [
{"params": [p for n, p in encoder.model.named_parameters() if not any(nd in n for nd in new_params)], },
{"params": [p for n, p in encoder.model.named_parameters() if any(nd in n for nd in new_params)], "lr": 5e-4}
]
if args.single_lr:
para_opt=encoder.parameters()
else:
para_opt=optimizer_grouped_parameters
optimizer = AdamW(para_opt, lr=learning_rate, eps=1e-6, weight_decay=args.weight_decay)
scaler = GradScaler()
num_samples = len(train_loader)
lr_scheduler = get_linear_schedule_with_warmup(optimizer, int(warmup_epochs * samples_per_epoch/train_batch_size), int(samples_per_epoch/train_batch_size*n_epochs))
step_global = -1
train_iter = iter(train_loader)
if args.freelb:
freelb=FreeLB(args.adv_K, args.adv_lr, args.adv_init_mag, args.adv_max_norm, args.adv_norm_type, base_model='bert')
best_f1 = 0.0
f_epoch_lr=open("epoch_lr.txt","w+")
for i in tqdm(range(n_epochs)):
true_positives, false_positives, false_negatives = {},{},{}
encoder.train()
loss_agg = 0
count = 0
with tqdm(range(int(samples_per_epoch/train_batch_size))) as pbar:
for _ in pbar:
try:
batch = next(train_iter)
except StopIteration:
train_iter = iter(train_loader)
batch = next(train_iter)
step_global += 1
exemplar_tokens, exemplar_mask, exemplar_positions, exemplar_labels, query_tokens, query_mask, query_positions, query_labels, label_types= batch
with autocast():
try:
output, loss = encoder(exemplar_tokens.to(device_debug), exemplar_mask.to(device_debug), exemplar_positions, exemplar_labels, query_tokens.to(device_debug), query_mask.to(device_debug), query_positions, query_labels, label_types)
except RuntimeError as exception:
raise exception
for pred, lbls in zip(output, query_labels):
for preds, lbs in zip(pred, lbls):
for inf in preds:
if inf[2] not in true_positives.keys():
true_positives[inf[2]] = 0
false_positives[inf[2]] = 0
false_negatives[inf[2]] = 0
if inf in lbs:
true_positives[inf[2]] += 1
else:
false_positives[inf[2]] += 1
for label in lbs:
if label[2] not in true_positives.keys():
true_positives[label[2]] = 0
false_positives[label[2]] = 0
false_negatives[label[2]] = 0
if label not in preds:
false_negatives[label[2]] += 1
count += 1
loss_agg += loss.item()
pbar.set_postfix({"Loss":f"{loss_agg/count:.2f}"})
if not debug:
wandb.log({"loss": loss.item()}, step=step_global)
wandb.log({"learning_rate": lr_scheduler.get_last_lr()[0]}, step=step_global)
scaler.scale(loss).backward()
if args.freelb:
inputs_freelb={
"exemplar_input_ids":exemplar_tokens.to(device_debug),
"exemplar_masks":exemplar_mask.to(device_debug),
"exemplar_entity_positions":exemplar_positions,
"exemplar_labels":exemplar_labels,
"query_input_ids":query_tokens.to(device_debug),
"query_masks":query_mask.to(device_debug),
"query_entity_positions":query_positions,
"query_labels":query_labels,
"type_labels":label_types,
}
output_fgm,loss_freelb = freelb.attack(encoder, inputs_freelb,scaler=scaler)
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(encoder.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
encoder.zero_grad()
del loss, output
p,r,f = get_f1(true_positives, false_positives, false_negatives)
p_train, r_train, f1_train = get_f1_macro(true_positives, false_positives, false_negatives, prnt=True)
if not debug:
wandb.log({"precision_train": p_train}, step=step_global)
wandb.log({"recall_train": r_train}, step=step_global)
wandb.log({"f1_macro_train": f1_train}, step=step_global)
if not train_only:
true_positives, false_positives, false_negatives = {},{},{}
encoder.eval()
max_memory_dev=0
with tqdm(dev_loader) as pbar:
for i,batch in enumerate(pbar):
with torch.no_grad():
exemplar_tokens, exemplar_mask, exemplar_positions, exemplar_labels, query_tokens, query_mask, query_positions, query_labels, label_types = batch
output,loss_dev= encoder(exemplar_tokens.to(device_debug), exemplar_mask.to(device_debug), exemplar_positions, exemplar_labels, query_tokens.to(device_debug), query_mask.to(device_debug), query_positions, query_labels, label_types)
for pred, lbls in zip(output, query_labels):
for preds, lbs in zip(pred, lbls):
for inf in preds:
if inf[2] not in true_positives.keys():
true_positives[inf[2]] = 0
false_positives[inf[2]] = 0
false_negatives[inf[2]] = 0
if inf in lbs:
true_positives[inf[2]] += 1
else:
false_positives[inf[2]] += 1
for label in lbs:
if label[2] not in true_positives.keys():
true_positives[label[2]] = 0
false_positives[label[2]] = 0
false_negatives[label[2]] = 0
if label not in preds:
false_negatives[label[2]] += 1
if not debug:
wandb.log({"loss_dev": loss_dev.item()}, step=step_global)
p,r,f = get_f1(true_positives, false_positives, false_negatives)
p_dev, r_dev, f1_dev = get_f1_macro(true_positives, false_positives, false_negatives, prnt=True)
if not debug:
print(i," ",optimizer.state_dict()['param_groups'][0]['lr'],file=f_epoch_lr,flush=True)
if f1_dev >= best_f1:
wandb.log({"best_f1_macro_dev": f1_dev}, step=step_global)
best_f1 = f1_dev
torch.save(encoder.state_dict(), f"checkpoints/{args.project}_{random_string}.pt")
else:
torch.save(encoder.state_dict(), f"checkpoints/{args.project}_{random_string}_normal.pt")
if not debug:
wandb.log({"precision_dev": p_dev}, step=step_global)
wandb.log({"recall_dev": r_dev}, step=step_global)
wandb.log({"f1_macro_dev": f1_dev}, step=step_global)
f_epoch_lr.close()
print(random_string)
print("---- INDOMAIN TEST EVAL -----")
if n_epochs > 0:
encoder.load_state_dict(torch.load(f"checkpoints/{args.project}_{random_string}.pt"))
else:
step_global = 0
true_positives, false_positives, false_negatives = {},{},{}
encoder.eval()
with tqdm(indomain_test_loader) as pbar:
for batch in pbar:
with torch.no_grad():
exemplar_tokens, exemplar_mask, exemplar_positions, exemplar_labels, query_tokens, query_mask, query_positions, query_labels, label_types = batch
output= encoder(exemplar_tokens.to(device_debug), exemplar_mask.to(device_debug), exemplar_positions, exemplar_labels, query_tokens.to(device_debug), query_mask.to(device_debug), query_positions, None, label_types)
for pred, lbls in zip(output, query_labels):
for preds, lbs in zip(pred, lbls):
for inf in preds:
if inf[2] not in true_positives.keys():
true_positives[inf[2]] = 0
false_positives[inf[2]] = 0
false_negatives[inf[2]] = 0
if inf in lbs:
true_positives[inf[2]] += 1
else:
false_positives[inf[2]] += 1
for label in lbs:
if label[2] not in true_positives.keys():
true_positives[label[2]] = 0
false_positives[label[2]] = 0
false_negatives[label[2]] = 0
if label not in preds:
false_negatives[label[2]] += 1
p,r,f = get_f1(true_positives, false_positives, false_negatives)
p_dev, r_dev, f1_dev = get_f1_macro(true_positives, false_positives, false_negatives, prnt=True)
if not debug:
wandb.log({"precision_test_indomain": p_dev}, step=step_global)
wandb.log({"recall_test_indomain": r_dev}, step=step_global)
wandb.log({"f1_macro_test_indomain": f1_dev}, step=step_global)
wandb.log({"f1_micro_test_indomain": f}, step=step_global)
print("---- SCIERC TEST EVAL -----")
true_positives, false_positives, false_negatives = {},{},{}
with tqdm(scierc_test_loader) as pbar:
for batch in pbar:
with torch.no_grad():
exemplar_tokens, exemplar_mask, exemplar_positions, exemplar_labels, query_tokens, query_mask, query_positions, query_labels, label_types= batch
output = encoder(exemplar_tokens.to(device_debug), exemplar_mask.to(device_debug), exemplar_positions, exemplar_labels, query_tokens.to(device_debug), query_mask.to(device_debug), query_positions, None, label_types)
for pred, lbls in zip(output, query_labels):
for preds, lbs in zip(pred, lbls):
for inf in preds:
if inf[2] not in true_positives.keys():
true_positives[inf[2]] = 0
false_positives[inf[2]] = 0
false_negatives[inf[2]] = 0
if inf in lbs:
true_positives[inf[2]] += 1
else:
false_positives[inf[2]] += 1
for label in lbs:
if label[2] not in true_positives.keys():
true_positives[label[2]] = 0
false_positives[label[2]] = 0
false_negatives[label[2]] = 0
if label not in preds:
false_negatives[label[2]] += 1
p,r,f = get_f1(true_positives, false_positives, false_negatives)
p_dev, r_dev, f1_dev = get_f1_macro(true_positives, false_positives, false_negatives, prnt=True)
if not debug:
wandb.log({"precision_test_scierc": p_dev}, step=step_global)
wandb.log({"recall_test_scierc": r_dev}, step=step_global)
wandb.log({"f1_macro_test_scierc": f1_dev}, step=step_global)
wandb.log({"f1_micro_test_scierc": f}, step=step_global)