-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathGenerateSolution.txt
250 lines (193 loc) · 12.1 KB
/
GenerateSolution.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
1) Generating necessary pkl-files
$ python elias/make_final_split.py
2) $ cd ira
3) In SETTINGS.json set STAGE to 1:
"STAGE": 1
4) Train segmentation networks on LUNA dataset:
$ python train_seg_patch.py luna_p8a1
//md5sum 75b63363507b44632c778f3165812000 luna_p8a1-20170226-173608.pkl
//trained model can be found at metadata/models/luna_p8a1-20170226-173608.pkl
5) Generate segmentation maps for DSB:
$ python test_seg_scan_dsb.py dsb_s5_p8a1
Alternatively, to make it in parallel on 4 GPUs do:
$ python test_seg_scan_dsb_prl.py dsb_s5_p8a1 0
$ python test_seg_scan_dsb_prl.py dsb_s5_p8a1 1
$ python test_seg_scan_dsb_prl.py dsb_s5_p8a1 2
$ python test_seg_scan_dsb_prl.py dsb_s5_p8a1 3
6) Generate AAPM Segmentation Maps
$ cd ../matthias
$ python test_seg_scan_aapm.py aapm_s2_p8a1
7) Train False Positive Reduction Network on LUNA dataset
$ cd ../ira
$ python train_fpred_patch.py luna_c3
//md5sum c3bedca59e6fa93221ba9c88ece7953d luna_c3-20170226-174919.pkl
//trained model can be found at metadata/models/luna_c3-20170226-174919.pkl
8) Generate false positive predictions for DSB candidates
$ python test_fpred_scan.py dsb_c3_s5_p8a1
9) Generate False Positive predictions AAPM
$ cd ../matthias
$ python matthias/test_fpred_scan_aapm.py aapm_c3_s2_p8a1
10) Train Malignancy Detection Networks on LUNA data for transfer learning
$ cd ../fred
$ python train_props_patch.py r_fred_malignancy_2
//md5sum 676adf509ed8193ecd114b5dcbf0c7f6 r_fred_malignancy_2-20170328-230443.pkl
//trained model can be found at metadata/models/r_fred_malignancy_2-20170328-230443.pkl
$ python train_props_patch.py r_fred_malignancy_7
//md5sum 5689072d7bd49f079654e21ce6d1f423 r_fred_malignancy_7-20170404-163552.pkl
//trained model can be found at metadata/models/r_fred_malignancy_7-20170404-163552.pkl
$ python train_props_patch.py r_fred_malignancy_8
//md5sum ca5cab14549e601628bd7612adba3b23 r_fred_malignancy_8-20170404-171012.pkl
//trained model can be found at metadata/models/r_fred_malignancy_8-20170404-171012.pkl
$ python train_props_patch.py r_fred_centroid_1
11) Train cancer prediction networks on DSB stage 1 data
$ cd ../elias
$ python train_class_dsb.py dsb_a_eliasq1_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq1_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq3_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq3_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq4_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq4_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq5_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq5_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq6_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq6_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq10_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq10_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq11_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq11_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq14_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq14_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_eliasq15_mal7_s5_p8a1_all
$ python train_class_dsb.py dsb_a_eliasq15_mal7_s5_p8a1_spl
$ cd ../lio
$ python train_class_dsb.py dsb_a_lionoclip_c3_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_liolme32_c3_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_liox8_c3_s2_p8a1_spl
$ python train_class_dsb.py dsb_a_liox11_c3_s5_p8a1_spl
$ python train_class_dsb.py dsb_a_liox13_c3_s2_p8a1_spl
$ python train_class_dsb.py dsb_a_lionoclip_c3_s5_p8a1_all
$ python train_class_dsb.py dsb_a_liolme32_c3_s5_p8a1_all
$ python train_class_dsb.py dsb_a_liox8_c3_s2_p8a1_all
$ python train_class_dsb.py dsb_a_liox11_c3_s5_p8a1_all
$ python train_class_dsb.py dsb_a_liox13_c3_s2_p8a1_all
$ cd ../matthias
$ python train_class_dsb.py dsb_af25lmelr10-1_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_af25lmeaapm_mal2_s5_pa81_spl
$ python train_class_dsb.py dsb_af25lmelr10-3_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_af25lmelr10-1_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_af25lmeaapm_mal2_s5_pa81_all
$ python train_class_dsb.py dsb_af25lmelr10-3_mal2_s5_p8a1_all
$ cd ../frederic
$ python train_class_dsb.py dsb_af27lme_mal2_s5_p8a1_all
$ python train_class_dsb.py dsb_af27lme_mal2_s5_p8a1_spl
$ python train_class_dsb_coords.py dsb_af30lme_mal2_s5_p8a1_all
$ python train_class_dsb_coords.py dsb_af30lme_mal2_s5_p8a1_spl
$ python train_class_dsb.py dsb_af31lme_mal8_s5_p8a1_all
$ python train_class_dsb.py dsb_af31lme_mal8_s5_p8a1_spl
$ python train_class_dsb.py dsb_af34lme_mal7_s5_p8a1_all
$ python train_class_dsb.py dsb_af34lme_mal7_s5_p8a1_spl
$ python train_class_dsb.py dsb_af35lme_mal7_s5_p8a1_all
$ python train_class_dsb.py dsb_af35lme_mal7_s5_p8a1_spl
$ python train_class_dsb.py dsb_af36_eq10_mal7_s5_p8a1_all
$ python train_class_dsb.py dsb_af36_eq10_mal7_s5_p8a1_spl
12) Generate predictions for DSB stage 1 data from the split for ensemble weighing
$ cd ../elias
$ python test_class_dsb.py dsb_a_eliasq1_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq3_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq4_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq5_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq6_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq10_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq11_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq14_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_eliasq15_mal7_s5_p8a1_spl valid
$ cd ../lio
$ python test_class_dsb.py dsb_a_lionoclip_c3_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_liolme32_c3_s5_p8a1_spll valid
$ python test_class_dsb.py dsb_a_liox8_c3_s2_p8a1_spl valid
$ python test_class_dsb.py dsb_a_liox11_c3_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_a_liox13_c3_s2_p8a1_spl valid
$ cd ../matthias
$ python test_class_dsb.py dsb_af25lmelr10-1_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_af25lmeaapm_mal2_s5_pa81_spl valid
$ python test_class_dsb.py dsb_af25lmelr10-3_mal2_s5_p8a1_spl valid
$ cd ../frederic
$ python test_class_dsb.py dsb_af27lme_mal2_s5_p8a1_spl valid
$ python test_class_dsb_coords.py dsb_af30lme_mal2_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_af31lme_mal8_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_af34lme_mal7_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_af35lme_mal7_s5_p8a1_spl valid
$ python test_class_dsb.py dsb_af36_eq10_mal7_s5_p8a1_spl valid
13) Generate predictions for the DSB final stage data
// change stage field in SETTINGS.json files in all branch folders
In SETTINGS.json set STAGE to 2:
"STAGE": 2
$ cd ../elias
$ python test_class_dsb.py dsb_a_eliasq1_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq3_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq4_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq5_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq6_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq10_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq11_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq14_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq15_mal7_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_eliasq1_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq3_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq4_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq5_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq6_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq10_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq11_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq14_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_eliasq15_mal7_s5_p8a1_all test
$ cd ../lio
$ python test_class_dsb.py dsb_a_lionoclip_c3_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_liolme32_c3_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_liox8_c3_s2_p8a1_spl test
$ python test_class_dsb.py dsb_a_liox11_c3_s5_p8a1_spl test
$ python test_class_dsb.py dsb_a_liox13_c3_s2_p8a1_spl test
$ python test_class_dsb.py dsb_a_lionoclip_c3_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_liolme32_c3_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_liox8_c3_s2_p8a1_all test
$ python test_class_dsb.py dsb_a_liox11_c3_s5_p8a1_all test
$ python test_class_dsb.py dsb_a_liox13_c3_s2_p8a1_all test
$ cd ../frederic
// replace dummy array with pids of stage2 data in configs
$ python test_class_dsb.py dsb_af27lme_mal2_s5_p8a1_all test
$ python test_class_dsb.py dsb_af27lme_mal2_s5_p8a1_spl test
$ python test_class_dsb_coords.py dsb_af30lme_mal2_s5_p8a1_all test
$ python test_class_dsb_coords.py dsb_af30lme_mal2_s5_p8a1_spl test
$ python test_class_dsb.py dsb_af31lme_mal8_s5_p8a1_all test
$ python test_class_dsb.py dsb_af31lme_mal8_s5_p8a1_spl test
$ python test_class_dsb.py dsb_af34lme_mal7_s5_p8a1_all test
$ python test_class_dsb.py dsb_af34lme_mal7_s5_p8a1_spl test
$ python test_class_dsb.py dsb_af35lme_mal7_s5_p8a1_all test
$ python test_class_dsb.py dsb_af35lme_mal7_s5_p8a1_spl test
$ python test_class_dsb.py dsb_af36_eq10_mal7_s5_p8a1_all test
$ python test_class_dsb.py dsb_af36_eq10_mal7_s5_p8a1_spl test
$ cd ../matthias
$ python test_class_dsb.py dsb_af25lmelr10-1_mal2_s5_p8a1_spl stage2
$ python test_class_dsb.py dsb_af25lmeaapm_mal2_s5_pa81_spl stage2
$ python test_class_dsb.py dsb_af25lmelr10-3_mal2_s5_p8a1_spl stage2
$ python test_class_dsb.py dsb_af25lmelr10-1_mal2_s5_p8a1_all stage2
$ python test_class_dsb.py dsb_af25lmeaapm_mal2_s5_pa81_all stage2
$ python test_class_dsb.py dsb_af25lmelr10-3_mal2_s5_p8a1_all stage2
14) Making ensembles
$ cd ../andreas/ensemble
// make sure settings.json has stage = 2
$ python ensemble_main.py
// This script will generate the two submissions
Extra information to make it easier to check our approach:
Results of the ensembling approaches:
DEFENSIVE ENSEMBLE
10-skf-cv: dsb_af36_eq10_mal7_s5_p8a1_spl is always the best.
Other configs that are used during CV are: ['dsb_a_eliasq5_mal2_s5_p8a1_spl', 'dsb_a_eliasq14_mal2_s5_p8a1_spl', 'dsb_a_eliasq15_mal7_s5_p8a1_spl', 'dsb_a_liolme32_c3_s5_p8a1_spl', 'dsb_af30lme_mal2_s5_p8a1_spl', 'dsb_af34lme_mal7_s5_p8a1_spl', 'dsb_af36_eq10_mal7_s5_p8a1_spl']
reoptimizing on full valid set will give dsb_af36_eq10_mal7_s5_p8a1_spl 100% weight
TLDR: defensive ensemble = dsb_af36_eq10_mal7_s5_p8a1_spl
OFFENSIVE ENSEMBLE
will take the configs used by the defensive ensemble, assign equal weights, take those models trained on the full data set and average their predictions for stage2 LB.
Here: average test set predictions of configs ['dsb_a_eliasq5_mal2_s5_p8a1_spl', 'dsb_a_eliasq14_mal2_s5_p8a1_spl', 'dsb_a_eliasq15_mal7_s5_p8a1_spl', 'dsb_a_liolme32_c3_s5_p8a1_spl', 'dsb_af30lme_mal2_s5_p8a1_spl', 'dsb_af34lme_mal7_s5_p8a1_spl', 'dsb_af36_eq10_mal7_s5_p8a1_spl']
So the following models are selected to make the offensive ensemble:
['dsb_a_eliasq5_mal2_s5_p8a1_all', 'dsb_a_eliasq14_mal2_s5_p8a1_all', 'dsb_a_eliasq15_mal7_s5_p8a1_all', 'dsb_a_liolme32_c3_s5_p8a1_all', 'dsb_af30lme_mal2_s5_p8a1_all', 'dsb_af34lme_mal7_s5_p8a1_all', 'dsb_af36_eq10_mal7_s5_p8a1_all']
All trained models can be found in metadata/models