-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathdata_transforms.py
568 lines (450 loc) · 22.3 KB
/
data_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
from collections import namedtuple
import numpy as np
import scipy.ndimage
import math
import utils_lung
MAX_HU = 400.
MIN_HU = -1000.
rng = np.random.RandomState(317070)
def hu2normHU(x):
"""
Modifies input data
:param x:
:return:
"""
x = (x - MIN_HU) / (MAX_HU - MIN_HU)
x = np.clip(x, 0., 1., out=x)
return x
def hu2normHU_low_clip(x):
"""
Modifies input data
:param x:
:return:
"""
x = (x - MIN_HU) / (MAX_HU - MIN_HU)
x = np.clip(x, 0., 10., out=x)
return x
def pixelnormHU(x):
x = (x - MIN_HU) / (MAX_HU - MIN_HU)
x = np.clip(x, 0., 1., out=x)
return (x - 0.5) / 0.5
def histogram_equalization(x, hist=None, bins=None):
# hist is a normalized histogram, which means that the sum of the counts has to be one
if hist is None and bins is None:
# For the case no target histogram is given
bins = np.arange(-950,500,100)
n_bins = bins.shape[0] -1
hist = 1. * np.ones(n_bins) / n_bins
elif hist is None or bins is None:
raise
assert(len(bins) == (len(hist)+1))
# init our target array
z = np.empty(x.shape)
# copy the values outside of the bins from the original
z[x<=bins[0]] = x[x<=bins[0]]
z[x>=bins[-1]] = x[x>=bins[-1]]
inside_bins = np.logical_and(x>bins[0], x<bins[-1])
n_bins = bins.shape[0] -1
prev_percentile = 0
for i in range(n_bins):
target_count = hist[i]
lower_bound = bins[i]
upper_bound = bins[i+1]
new_percentile = prev_percentile + target_count*100
low_orig = np.percentile(x[inside_bins], prev_percentile)
if i == n_bins-1:
high_orig = bins[-1]
else:
high_orig = np.percentile(x[inside_bins], new_percentile)
prev_percentile = new_percentile
elements_to_rescale = np.logical_and(x>=low_orig, x<high_orig)
y = x[elements_to_rescale]
y_r = (y - low_orig)/(high_orig-low_orig)*(upper_bound-lower_bound) + lower_bound
print 'y_r', np.isnan(y_r).any()
z[elements_to_rescale] = y_r
return z
def get_rescale_params_hist_eq(x, hist=None, bins=None):
# hist is a normalized histogram, which means that the sum of the counts has to be one
if hist is None and bins is None:
# For the case no target histogram is given
bins = np.arange(-950,500,100)
n_bins = bins.shape[0] -1
hist = 1. * np.ones(n_bins) / n_bins
elif hist is None or bins is None:
raise
assert(len(bins) == (len(hist)+1))
inside_bins = np.logical_and(x>bins[0], x<bins[-1])
n_bins = bins.shape[0] -1
prev_percentile = 0
original_borders = []
for i in range(n_bins):
target_count = hist[i]
lower_bound = bins[i]
upper_bound = bins[i+1]
new_percentile = prev_percentile + target_count*100
low_orig = np.percentile(x[inside_bins], prev_percentile)
original_borders.append(low_orig)
prev_percentile = new_percentile
original_borders.append(bins[-1])
return bins, original_borders
def apply_hist_eq_patch(x, bins, original_borders):
# init our target array
z = np.empty(x.shape)
# if np.isnan(z).any():
# print '1 np.isnan(z).any()', np.isnan(z).any()
# copy the values outside of the bins from the original
z[x<=bins[0]] = x[x<=bins[0]]
z[x>=bins[-1]] = x[x>=bins[-1]]
# print 'x.shape', x.shape, x.shape[0] * x.shape[1] * x.shape[2] * x.shape[3]
# print 'np.sum(x<=bins[0])', np.sum(x<=bins[0])
# print 'np.sum(x>=bins[-1])', np.sum(x>=bins[-1])
# if np.isnan(z).any():
# print '2 np.isnan(z).any()', np.isnan(z).any()
inside_bins = np.logical_and(x>bins[0], x<bins[-1])
# print 'np.sum(inside_bins)', np.sum(inside_bins)
n_total_elements_replaced = 0
n_bins = bins.shape[0] -1
for i in range(n_bins):
lower_bound = bins[i]
upper_bound = bins[i+1]
low_orig = original_borders[i]
high_orig = original_borders[i+1]
elements_to_rescale = np.logical_and(x>=low_orig, x<high_orig)
n_total_elements_replaced += np.sum(elements_to_rescale)
# print 'np.sum(elements_to_rescale)', np.sum(elements_to_rescale)
y = x[elements_to_rescale]
y_r = (y - low_orig)/(high_orig-low_orig)*(upper_bound-lower_bound) + lower_bound
z[elements_to_rescale] = y_r
# if np.isnan(z).any():
# print 'np.isnan(z).any()', np.isnan(z).any()
# print 'n_total_elements_replaced', n_total_elements_replaced
return z
def sample_augmentation_parameters(transformation):
shift_z = rng.uniform(*transformation.get('translation_range_z', [0., 0.]))
shift_y = rng.uniform(*transformation.get('translation_range_y', [0., 0.]))
shift_x = rng.uniform(*transformation.get('translation_range_x', [0., 0.]))
translation = (shift_z, shift_y, shift_x)
rotation_z = rng.uniform(*transformation.get('rotation_range_z', [0., 0.]))
rotation_y = rng.uniform(*transformation.get('rotation_range_y', [0., 0.]))
rotation_x = rng.uniform(*transformation.get('rotation_range_x', [0., 0.]))
rotation = (rotation_z, rotation_y, rotation_x)
return namedtuple('Params', ['translation', 'rotation'])(translation, rotation)
def transform_scan3d(data, pixel_spacing, p_transform,
luna_annotations=None,
luna_origin=None,
p_transform_augment=None,
world_coord_system=True,
lung_mask=None):
mm_patch_size = np.asarray(p_transform['mm_patch_size'], dtype='float32')
out_pixel_spacing = np.asarray(p_transform['pixel_spacing'])
input_shape = np.asarray(data.shape)
mm_shape = input_shape * pixel_spacing / out_pixel_spacing
output_shape = p_transform['patch_size']
# here we give parameters to affine transform as if it's T in
# output = T.dot(input)
# https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html
# but the affine_transform() makes it reversed for scipy
tf_mm_scale = affine_transform(scale=mm_shape / input_shape)
tf_shift_center = affine_transform(translation=-mm_shape / 2.)
tf_shift_uncenter = affine_transform(translation=mm_patch_size / 2.)
tf_output_scale = affine_transform(scale=output_shape / mm_patch_size)
if p_transform_augment:
augment_params_sample = sample_augmentation_parameters(p_transform_augment)
tf_augment = affine_transform(translation=augment_params_sample.translation,
rotation=augment_params_sample.rotation)
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_augment).dot(tf_shift_uncenter).dot(tf_output_scale)
else:
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_shift_uncenter).dot(tf_output_scale)
data_out = apply_affine_transform(data, tf_total, order=1, output_shape=output_shape)
if lung_mask is not None:
lung_mask_out = apply_affine_transform(lung_mask, tf_total, order=1, output_shape=output_shape)
lung_mask_out[lung_mask_out > 0.] = 1.
if luna_annotations is not None:
annotatations_out = []
for zyxd in luna_annotations:
zyx = np.array(zyxd[:3])
voxel_coords = utils_lung.world2voxel(zyx, luna_origin, pixel_spacing) if world_coord_system else zyx
voxel_coords = np.append(voxel_coords, [1])
voxel_coords_out = np.linalg.inv(tf_total).dot(voxel_coords)[:3]
diameter_mm = zyxd[-1]
diameter_out = diameter_mm * output_shape[1] / mm_patch_size[1] / out_pixel_spacing[1]
zyxd_out = np.rint(np.append(voxel_coords_out, diameter_out))
annotatations_out.append(zyxd_out)
annotatations_out = np.asarray(annotatations_out)
if lung_mask is None:
return data_out, annotatations_out, tf_total
else:
return data_out, annotatations_out, tf_total, lung_mask_out
if lung_mask is None:
return data_out, tf_total
else:
return data_out, tf_total, lung_mask_out
def transform_patch3d(data, pixel_spacing, p_transform,
patch_center,
luna_origin,
luna_annotations=None,
p_transform_augment=None,
world_coord_system=True):
mm_patch_size = np.asarray(p_transform['mm_patch_size'], dtype='float32')
out_pixel_spacing = np.asarray(p_transform['pixel_spacing'])
input_shape = np.asarray(data.shape)
mm_shape = input_shape * pixel_spacing / out_pixel_spacing
output_shape = p_transform['patch_size']
zyx = np.array(patch_center[:3])
voxel_coords = utils_lung.world2voxel(zyx, luna_origin, pixel_spacing) if world_coord_system else zyx
voxel_coords_mm = voxel_coords * mm_shape / input_shape
# here we give parameters to affine transform as if it's T in
# output = T.dot(input)
# https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html
# but the affine_transform() makes it reversed for scipy
tf_mm_scale = affine_transform(scale=mm_shape / input_shape)
tf_shift_center = affine_transform(translation=-voxel_coords_mm)
tf_shift_uncenter = affine_transform(translation=mm_patch_size / 2.)
tf_output_scale = affine_transform(scale=output_shape / mm_patch_size)
if p_transform_augment:
augment_params_sample = sample_augmentation_parameters(p_transform_augment)
# print 'augmentation parameters', augment_params_sample
tf_augment = affine_transform(translation=augment_params_sample.translation,
rotation=augment_params_sample.rotation)
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_augment).dot(tf_shift_uncenter).dot(tf_output_scale)
else:
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_shift_uncenter).dot(tf_output_scale)
data_out = apply_affine_transform(data, tf_total, order=1, output_shape=output_shape)
# transform patch annotations
diameter_mm = patch_center[-1]
diameter_out = diameter_mm * output_shape[1] / mm_patch_size[1] / out_pixel_spacing[1]
voxel_coords = np.append(voxel_coords, [1])
voxel_coords_out = np.linalg.inv(tf_total).dot(voxel_coords)[:3]
patch_annotation_out = np.rint(np.append(voxel_coords_out, diameter_out))
# print 'pathch_center_after_transform', patch_annotation_out
if luna_annotations is not None:
annotatations_out = []
for zyxd in luna_annotations:
zyx = np.array(zyxd[:3])
voxel_coords = utils_lung.world2voxel(zyx, luna_origin, pixel_spacing) if world_coord_system else zyx
voxel_coords = np.append(voxel_coords, [1])
voxel_coords_out = np.linalg.inv(tf_total).dot(voxel_coords)[:3]
diameter_mm = zyxd[-1]
diameter_out = diameter_mm * output_shape[1] / mm_patch_size[1] / out_pixel_spacing[1]
zyxd_out = np.rint(np.append(voxel_coords_out, diameter_out))
annotatations_out.append(zyxd_out)
annotatations_out = np.asarray(annotatations_out)
return data_out, patch_annotation_out, annotatations_out
return data_out, patch_annotation_out
def transform_patch3d_ls(data, pixel_spacing, p_transform,
patch_center,
luna_origin,
p_transform_augment=None,
world_coord_system=True):
mm_patch_size = np.asarray(p_transform['mm_patch_size'], dtype='float32')
out_pixel_spacing = np.asarray(p_transform['pixel_spacing'])
input_shape = np.asarray(data.shape)
mm_shape = input_shape * pixel_spacing / out_pixel_spacing
output_shape = p_transform['patch_size']
zyx = np.array(patch_center[:3])
# voxel_coords = utils_lung.world2voxel(zyx, luna_origin, pixel_spacing) if world_coord_system else zyx
# voxel_coords_mm = voxel_coords * mm_shape / input_shape
voxel_coords_mm = zyx * mm_shape / input_shape
# here we give parameters to affine transform as if it's T in
# output = T.dot(input)
# https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html
# but the affine_transform() makes it reversed for scipy
tf_mm_scale = affine_transform(scale=mm_shape / input_shape)
tf_shift_center = affine_transform(translation=-voxel_coords_mm)
tf_shift_uncenter = affine_transform(translation=mm_patch_size / 2.)
tf_output_scale = affine_transform(scale=output_shape / mm_patch_size)
if p_transform_augment:
augment_params_sample = sample_augmentation_parameters(p_transform_augment)
# print 'augmentation parameters', augment_params_sample
tf_augment = affine_transform(translation=augment_params_sample.translation,
rotation=augment_params_sample.rotation)
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_augment).dot(tf_shift_uncenter).dot(tf_output_scale)
else:
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_shift_uncenter).dot(tf_output_scale)
print 'data min,max', np.amin(data), np.amax(data)
data_out = apply_affine_transform(data, tf_total, order=1, output_shape=output_shape)
print 'data_out min,max', np.amin(data_out), np.amax(data_out)
# transform patch annotations
# voxel_coords = np.append(voxel_coords, [1])
# voxel_coords_out = np.linalg.inv(tf_total).dot(voxel_coords)[:3]
# patch_annotation_out = np.rint(voxel_coords_out)
# print 'pathch_center_after_transform', patch_annotation_out
return data_out #, patch_annotation_out
def transform_dsb_candidates(data, patch_centers, pixel_spacing, p_transform,
p_transform_augment=None):
input_shape = np.asarray(data.shape)
output_shape = np.asarray(p_transform['patch_size'])
patches_out = []
for zyxd in patch_centers:
if -1 in zyxd:
patch_out = np.zeros(output_shape)
elif 'affine_tf' in p_transform and not p_transform['affine_tf']:
assert(output_shape[0] == output_shape[1])
assert(output_shape[0] == output_shape[2])
zyx = np.round(np.array(zyxd[:3])).astype('int32')
z_in = zyx[0] > output_shape[0]/2 and zyx[0] < input_shape[0]-output_shape[0]/2
y_in = zyx[1] > output_shape[1]/2 and zyx[1] < input_shape[1]-output_shape[1]/2
x_in = zyx[2] > output_shape[2]/2 and zyx[2] < input_shape[2]-output_shape[2]/2
patch_inside_tensor = z_in and y_in and x_in
if patch_inside_tensor:
patch_out = data[zyx[0]-output_shape[0]/2:zyx[0]+output_shape[0]/2,
zyx[1]-output_shape[1]/2:zyx[1]+output_shape[1]/2,
zyx[2]-output_shape[2]/2:zyx[2]+output_shape[2]/2]
else:
data_pad = np.empty((input_shape[0]+output_shape[0],
input_shape[1]+output_shape[1],
input_shape[2]+output_shape[2]))
data_pad[0:output_shape[0]/2,:,:] = 0
data_pad[output_shape[0]/2+input_shape[0]:,:,:] = 0
data_pad[:,0:output_shape[1]/2,:] = 0
data_pad[:,output_shape[1]/2+input_shape[1]:,:] = 0
data_pad[:,:,0:output_shape[2]/2] = 0
data_pad[:,:,output_shape[2]/2+input_shape[2]:] = 0
data_pad[output_shape[0]/2:output_shape[0]/2+input_shape[0],
output_shape[1]/2:output_shape[1]/2+input_shape[1],
output_shape[2]/2:output_shape[2]/2+input_shape[2],] = data
#too slow data_pad = np.lib.pad(data, output_shape[0], mode='constant', constant_values = MIN_HU)
zyx_pad = zyx + output_shape/2
patch_out = data_pad[zyx_pad[0]-output_shape[0]/2:zyx_pad[0]+output_shape[0]/2,
zyx_pad[1]-output_shape[1]/2:zyx_pad[1]+output_shape[1]/2,
zyx_pad[2]-output_shape[2]/2:zyx_pad[2]+output_shape[2]/2]
else:
mm_patch_size = np.asarray(p_transform['mm_patch_size'], dtype='float32')
out_pixel_spacing = np.asarray(p_transform['pixel_spacing'])
mm_shape = input_shape * pixel_spacing / out_pixel_spacing
zyx = np.array(zyxd[:3])
zyx_mm = zyx * mm_shape / input_shape
tf_mm_scale = affine_transform(scale=mm_shape / input_shape)
tf_shift_center = affine_transform(translation=-zyx_mm)
tf_shift_uncenter = affine_transform(translation=mm_patch_size / 2.)
tf_output_scale = affine_transform(scale=output_shape / mm_patch_size)
if p_transform_augment:
augment_params_sample = sample_augmentation_parameters(p_transform_augment)
tf_augment = affine_transform(translation=augment_params_sample.translation,
rotation=augment_params_sample.rotation)
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_augment).dot(tf_shift_uncenter).dot(tf_output_scale)
else:
tf_total = tf_mm_scale.dot(tf_shift_center).dot(tf_shift_uncenter).dot(tf_output_scale)
patch_out = apply_affine_transform(data, tf_total, order=p_transform['order'], output_shape=output_shape)
patches_out.append(patch_out[None, :, :, :])
return np.concatenate(patches_out, axis=0)
def build_dsb_can_heatmap(data, candidates, pixel_spacing, p_transform,
p_transform_augment=None):
assert(candidates.shape[1]>3)
mm_patch_size = np.asarray(p_transform['mm_patch_size'], dtype='float32')
out_pixel_spacing = np.asarray(p_transform['pixel_spacing'])
input_shape = np.asarray(data.shape)
mm_shape = input_shape * pixel_spacing / out_pixel_spacing
output_shape = p_transform['heatmap_size']
max_shape = p_transform['max_shape']
# Constructing heatmap
heatmap = np.zeros(output_shape)
max_dims = np.zeros(3)
min_dims = 99999*np.ones(3)
for can in candidates:
value = can[-1]
zyx = np.array(can[:3])
zyx_mm = zyx * mm_shape / input_shape
#only for analyse purpose
for idx, d in enumerate(zyx_mm):
if d>max_dims[idx]:
max_dims[idx] = d
if d<min_dims[idx]:
min_dims[idx] = d
zyx_hm = zyx_mm / max_shape * output_shape
heatmap[zyx_hm.astype('int')] += value
# print 'max_dims', max_dims
# print 'min_dims', min_dims
# print 'heatmap max', np.amax(heatmap)
# print 'heatmap min', np.amin(heatmap)
# augmentation
if p_transform_augment:
augment_params_sample = sample_augmentation_parameters(p_transform_augment)
tf_augment = affine_transform(translation=augment_params_sample.translation, rotation=augment_params_sample.rotation)
heatmap = apply_affine_transform(heatmap, tf_augment, order=p_transform['heatmap_order'], output_shape=output_shape)
heatmap = heatmap / p_transform['heatmap_norm']
return heatmap
def make_3d_mask(img_shape, center, radius, shape='sphere'):
mask = np.zeros(img_shape)
radius = np.rint(radius)
center = np.rint(center)
sz = np.arange(int(max(center[0] - radius, 0)), int(max(min(center[0] + radius + 1, img_shape[0]), 0)))
sy = np.arange(int(max(center[1] - radius, 0)), int(max(min(center[1] + radius + 1, img_shape[1]), 0)))
sx = np.arange(int(max(center[2] - radius, 0)), int(max(min(center[2] + radius + 1, img_shape[2]), 0)))
sz, sy, sx = np.meshgrid(sz, sy, sx)
if shape == 'cube':
mask[sz, sy, sx] = 1.
elif shape == 'sphere':
distance2 = ((center[0] - sz) ** 2
+ (center[1] - sy) ** 2
+ (center[2] - sx) ** 2)
distance_matrix = np.ones_like(mask) * np.inf
distance_matrix[sz, sy, sx] = distance2
mask[(distance_matrix <= radius ** 2)] = 1
elif shape == 'gauss':
z, y, x = np.ogrid[:mask.shape[0], :mask.shape[1], :mask.shape[2]]
distance = ((z - center[0]) ** 2 + (y - center[1]) ** 2 + (x - center[2]) ** 2)
mask = np.exp(- 1. * distance / (2 * radius ** 2))
mask[(distance > 3 * radius ** 2)] = 0
return mask
def make_3d_mask_from_annotations(img_shape, annotations, shape):
mask = np.zeros(img_shape)
for zyxd in annotations:
mask += make_3d_mask(img_shape, zyxd[:3], zyxd[-1] / 2, shape)
mask = np.clip(mask, 0., 1.)
return mask
def make_gaussian_annotation(patch_annotation_tf, patch_size):
radius = patch_annotation_tf[-1] / 2.
zyx = patch_annotation_tf[:3]
distance_z = (zyx[0] - np.arange(patch_size[0])) ** 2
distance_y = (zyx[1] - np.arange(patch_size[1])) ** 2
distance_x = (zyx[2] - np.arange(patch_size[2])) ** 2
z_label = np.exp(- 1. * distance_z / (2 * radius ** 2))
y_label = np.exp(- 1. * distance_y / (2 * radius ** 2))
x_label = np.exp(- 1. * distance_x / (2 * radius ** 2))
label = np.vstack((z_label, y_label, x_label))
return label
def zmuv(x, mean, std):
if mean is not None and std is not None:
return (x - mean) / std
else:
return x
def affine_transform(scale=None, rotation=None, translation=None):
"""
rotation and shear in degrees
"""
matrix = np.eye(4)
if translation is not None:
matrix[:3, 3] = -np.asarray(translation, np.float)
if scale is not None:
matrix[0, 0] = 1. / scale[0]
matrix[1, 1] = 1. / scale[1]
matrix[2, 2] = 1. / scale[2]
if rotation is not None:
rotation = np.asarray(rotation, np.float)
rotation = map(math.radians, rotation)
cos = map(math.cos, rotation)
sin = map(math.sin, rotation)
mz = np.eye(4)
mz[1, 1] = cos[0]
mz[2, 1] = sin[0]
mz[1, 2] = -sin[0]
mz[2, 2] = cos[0]
my = np.eye(4)
my[0, 0] = cos[1]
my[0, 2] = -sin[1]
my[2, 0] = sin[1]
my[2, 2] = cos[1]
mx = np.eye(4)
mx[0, 0] = cos[2]
mx[0, 1] = sin[2]
mx[1, 0] = -sin[2]
mx[1, 1] = cos[2]
matrix = mx.dot(my).dot(mz).dot(matrix)
return matrix
def apply_affine_transform(_input, matrix, order=1, output_shape=None):
# output.dot(T) + s = input
T = matrix[:3, :3]
s = matrix[:3, 3]
return scipy.ndimage.interpolation.affine_transform(
_input, matrix=T, offset=s, order=order, output_shape=output_shape)