-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMR_loop_MDD_metabolite.R
169 lines (127 loc) · 5.91 KB
/
MR_loop_MDD_metabolite.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
##MDD > metabolite MR script ##
library(remotes)
library(TwoSampleMR)
library(readr)
library(dplyr)
library(ggplot2)
setwd('')
#reading in the list of metabolites (three to start with )
list_all_metabolites <- read.table("Metabolomics_Aut2021/all_metabolites_list.txt")
print('List of all metabolites read in')
#the linker file
meta_name_linker <- read.csv('Metabolomics_Aut2021/Nightingale_markers_desc_full.csv', header = TRUE)
meta_name_linker$linker_ID <- paste(meta_name_linker$Field.ID, ".0.0", sep = '')
meta_name_linker$linker_ID <- paste('f.',meta_name_linker$linker_ID, sep = '')
get_metabolitename <- function(ID_vector) {
metabolite_names <- c()
for (i in ID_vector){
metabolite <- meta_name_linker$Description[meta_name_linker$linker_ID == i]
metabolite_names <- append(metabolite_names, metabolite)
}
return(metabolite_names)
}
print('linker file read in')
#Setting up a table for the number of genetic instruments for each test to be saved
print("Setting up the GI table")
num_exposures <- 1
GI_summary <- data.frame(f.eid = 1:1, exposyre_name = 1:1, total_SNPs = 1:1, total_GI_signif = 1:1, GI_signif_maf_filter= 1:1, GI_final_postclumping = 1:1)
#read in the exposure data (same for every metabolite)
print("Reading in the exposure data ")
exposure_data <- read_exposure_data(filename = 'Metabolomics_Aut2021/raw_GWAS/mdd_sumstats_noUKB_withN_PGC2_andBETA.gz',
sep = "\t",
snp_col = "SNP",
beta_col = "BETA",
se_col = "SE",
eaf_col = "FRQ_U_314566",
effect_allele_col = "A1",
other_allele_col = "A2",
pval_col = "P",
ncase_col = "Nca",
ncontrol_col = "Nco",
samplesize_col = "N",
min_pval = 1e-200,
log_pval = FALSE,
chr_col = "CHR",
pos_col = "BP")
exposure_data$id.exposure <- 'MDD'
exposure_data$exposure <- 'MDD'
print('Selecting the significant SNPs')
exposure_data_signif <- exposure_data[exposure_data$pval.exposure < 5e-08,]
print("Filtering snps for MAF > 0.005")
exposure_data_signif_maf <- exposure_data_signif %>% filter(eaf.exposure < 0.995 & eaf.exposure > 0.005)
print("Clumping the significant SNPs")
exposure_data_clumped <- clump_data(exposure_data_signif_maf)
print("Appending number of genetic instruments to GI table")
GI_summary[1,1] <- 'MDD'
GI_summary[1,2] <- 'MDD'
GI_summary[1,3] <- dim(exposure_data)[1]
GI_summary[1,4] <- dim(exposure_data_signif)[1]
GI_summary[1,5] <- dim(exposure_data_signif_maf)[1]
GI_summary[1,6] <- dim(exposure_data_clumped)[1]
print('Beginning of loop with the outcome data')
for (i in 1:dim(list_all_metabolites)[1]) {
metabolite <- list_all_metabolites[i,]
print(metabolite)
file_name <- paste("col_num_loop","/norm_all_gwas.", metabolite, ".glm.linear.ldsc", sep = "")
print(file_name)
print("Reading in outcome data")
metabolite_outcome_data <- read_outcome_data(filename = file_name,
snps = exposure_data_clumped$SNP,
sep = '\t',
snp_col = 'SNP',
beta_col = 'BETA',
se_col ='SE',
effect_allele_col = 'A1',
other_allele_col = 'A2',
eaf_col = 'A1_FREQ',
pval_col = 'P',
samplesize_col= 'N')
print('Outcome data read in successfully')
metabolite_name <- get_metabolitename(metabolite)
print(metabolite_name)
metabolite_outcome_data$outcome <- metabolite_name
metabolite_outcome_data$id.outcome <- metabolite
print("Harmonising the data")
harmonised_data <- harmonise_data(exposure_dat=exposure_data_clumped, outcome_dat = metabolite_outcome_data)
print("Performing MR")
mr_results <- mr(harmonised_data)
print(head(mr_results))
mr_hetero <- mr_heterogeneity(harmonised_data)
mr_horiz_pleio <- mr_pleiotropy_test(harmonised_data)
res_single <- mr_singlesnp(harmonised_data)
res_loo <- mr_leaveoneout(harmonised_data)
#combining and saving the results
print("Combining and saving the results")
output_dir <- 'Metabolomics_Aut2021/MR_analysis/norm_GWAS_MR/MR_MDD_tometabolite/MR_results/'
mr_horiz_pleio <- mr_horiz_pleio %>% slice(rep(1:n(), each = 5))
mr_hetero <- rbind(mr_hetero, NA)
mr_hetero <- rbind(mr_hetero, NA)
mr_hetero <- rbind(mr_hetero, NA)
colnames(mr_hetero)[c(1,2,5)] <- c("het_exposure", "het_outcome", "het_method")
colnames(mr_horiz_pleio)[c(1,2,6,7)] <- c("egger_exposure", "egger_outcome", "egger_se", "egger_pval")
combined_results <- cbind(mr_results, mr_hetero[c(5,6,7,8)])
combined_results <- cbind(combined_results, mr_horiz_pleio[c(5,6,7)])
combinedresults_filename <- paste(output_dir, metabolite, ".mr_results.tsv", sep = "")
singlesnp_filename <- paste(output_dir, metabolite, ".mr_singlesnp_results.tsv", sep = "")
leaveoneout_filename <- paste(output_dir, metabolite, ".mr_leaveoneout_results.tsv", sep = "")
print("Writing the results out to EDDIE")
write.table(combined_results, combinedresults_filename, sep = "\t", quote = F, row.names = F)
write.table(res_single, singlesnp_filename, sep = "\t", quote = F, row.names = F)
write.table(res_loo, leaveoneout_filename, sep = "\t", quote = F, row.names = F)
#plots
print("Making and saving the plots")
plot_directory <- paste(output_dir, "plots/", sep = "")
#create a new directory for each report for the figures?
report_directory <- paste(output_dir, "reports/", metabolite, sep = "")
dir.create(report_directory)
p1 <- mr_scatter_plot(mr_results, harmonised_data)
ggsave(p1[[1]], file = paste(plot_directory, metabolite, ".mr_scatter_plot.pdf", sep = ""), width = 8, height = 8)
p2 <- mr_forest_plot(res_single)
ggsave(p2[[1]], file = paste(plot_directory, metabolite, ".mr_forest_plot.pdf", sep = ""), width = 8, height = 8)
p3 <- mr_leaveoneout_plot(res_loo)
ggsave(p3[[1]], file = paste(plot_directory,metabolite,".mr_leaveoneout.pdf", sep = ""), width = 8, height = 8)
p4 <- mr_funnel_plot(res_single)
ggsave(p4[[1]], file = paste(plot_directory, metabolite, ".mr_funnel_plot.pdf", sep = ""), width = 8 , height = 8)
mr_report(harmonised_data, output_path = report_directory)
}
write.table(GI_summary, 'Metabolomics_Aut2021/MR_analysis/norm_GWAS_MR/MR_MDD_tometabolite/MR_results/MDD_tometabolite_GI_summary.tsv', sep = '\t', quote = F, row.names = F)