-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlocal_agi_zh.py
680 lines (553 loc) · 24.8 KB
/
local_agi_zh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#!/usr/bin/env python3
from dotenv import load_dotenv
# Load default environment variables (.env)
load_dotenv()
import os
import time
import logging
from collections import deque
from typing import Dict, List
import importlib
import openai
import chromadb
import tiktoken as tiktoken
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
import re
# default opt out of chromadb telemetry.
from chromadb.config import Settings
client = chromadb.Client(Settings(anonymized_telemetry=False))
# Engine configuration
# Model: GPT, LLAMA, HUMAN, etc.
LLM_MODEL = os.getenv("LLM_MODEL", os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo")).lower()
# API Keys
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
if not (LLM_MODEL.startswith("llama") or LLM_MODEL.startswith("chatglm-6b") or LLM_MODEL.startswith("human")):
assert OPENAI_API_KEY, "\033[91m\033[1m" + "OPENAI_API_KEY environment variable is missing from .env" + "\033[0m\033[0m"
# Table config
RESULTS_STORE_NAME = os.getenv("RESULTS_STORE_NAME", os.getenv("TABLE_NAME", ""))
assert RESULTS_STORE_NAME, "\033[91m\033[1m" + "RESULTS_STORE_NAME environment variable is missing from .env" + "\033[0m\033[0m"
# Run configuration
INSTANCE_NAME = os.getenv("INSTANCE_NAME", os.getenv("BABY_NAME", "BabyAGI"))
COOPERATIVE_MODE = "none"
JOIN_EXISTING_OBJECTIVE = False
# Goal configuration
OBJECTIVE = os.getenv("OBJECTIVE", "")
INITIAL_TASK = os.getenv("INITIAL_TASK", os.getenv("FIRST_TASK", ""))
# Model configuration
OPENAI_TEMPERATURE = float(os.getenv("OPENAI_TEMPERATURE", 0.0))
# Extensions support begin
def can_import(module_name):
try:
importlib.import_module(module_name)
return True
except ImportError:
return False
DOTENV_EXTENSIONS = os.getenv("DOTENV_EXTENSIONS", "").split(" ")
# Command line arguments extension
# Can override any of the above environment variables
ENABLE_COMMAND_LINE_ARGS = (
os.getenv("ENABLE_COMMAND_LINE_ARGS", "false").lower() == "true"
)
if ENABLE_COMMAND_LINE_ARGS:
if can_import("extensions.argparseext"):
from extensions.argparseext import parse_arguments
OBJECTIVE, INITIAL_TASK, LLM_MODEL, DOTENV_EXTENSIONS, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE = parse_arguments()
# Human mode extension
# Gives human input to babyagi
if LLM_MODEL.startswith("human"):
if can_import("extensions.human_mode"):
from extensions.human_mode import user_input_await
# Load additional environment variables for enabled extensions
# TODO: This might override the following command line arguments as well:
# OBJECTIVE, INITIAL_TASK, LLM_MODEL, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE
if DOTENV_EXTENSIONS:
if can_import("extensions.dotenvext"):
from extensions.dotenvext import load_dotenv_extensions
load_dotenv_extensions(DOTENV_EXTENSIONS)
# TODO: There's still work to be done here to enable people to get
# defaults from dotenv extensions, but also provide command line
# arguments to override them
# Extensions support end
print("\033[95m\033[1m" + "\n*****CONFIGURATION*****\n" + "\033[0m\033[0m")
print(f"Name : {INSTANCE_NAME}")
print(f"Mode : {'alone' if COOPERATIVE_MODE in ['n', 'none'] else 'local' if COOPERATIVE_MODE in ['l', 'local'] else 'distributed' if COOPERATIVE_MODE in ['d', 'distributed'] else 'undefined'}")
print(f"LLM : {LLM_MODEL}")
# Check if we know what we are doing
assert OBJECTIVE, "\033[91m\033[1m" + "OBJECTIVE environment variable is missing from .env" + "\033[0m\033[0m"
assert INITIAL_TASK, "\033[91m\033[1m" + "INITIAL_TASK environment variable is missing from .env" + "\033[0m\033[0m"
LLAMA_MODEL_PATH = os.getenv("LLAMA_MODEL_PATH", "models/llama-13B/ggml-model.bin")
if LLM_MODEL.startswith("llama"):
if can_import("llama_cpp"):
from llama_cpp import Llama
print(f"LLAMA : {LLAMA_MODEL_PATH}" + "\n")
assert os.path.exists(LLAMA_MODEL_PATH), "\033[91m\033[1m" + f"Model can't be found." + "\033[0m\033[0m"
CTX_MAX = 1024
LLAMA_THREADS_NUM = int(os.getenv("LLAMA_THREADS_NUM", 8))
print('Initialize model for evaluation')
llm = Llama(
model_path=LLAMA_MODEL_PATH,
n_ctx=CTX_MAX,
n_threads=LLAMA_THREADS_NUM,
n_batch=512,
use_mlock=False,
)
print('\nInitialize model for embedding')
llm_embed = Llama(
model_path=LLAMA_MODEL_PATH,
n_ctx=CTX_MAX,
n_threads=LLAMA_THREADS_NUM,
n_batch=512,
embedding=True,
use_mlock=False,
)
print(
"\033[91m\033[1m"
+ "\n*****USING LLAMA.CPP. POTENTIALLY SLOW.*****"
+ "\033[0m\033[0m"
)
else:
print(
"\033[91m\033[1m"
+ "\nLlama LLM requires package llama-cpp. Falling back to GPT-3.5-turbo."
+ "\033[0m\033[0m"
)
LLM_MODEL = "gpt-3.5-turbo"
CHATGLM_API = os.getenv("CHATGLM_API", None)
CHATGLM_MODEL_PATH = os.getenv("CHATGLM_MODEL_PATH", "../chatglm-6b")
if LLM_MODEL.startswith("chatglm-6b"):
try:
CTX_MAX = 1024
if CHATGLM_API is None:
from transformers import AutoTokenizer, AutoModel
print(f"ChatGLM : {CHATGLM_MODEL_PATH}" + "\n")
assert os.path.exists(CHATGLM_MODEL_PATH), "\033[91m\033[1m" + f"Model can't be found." + "\033[0m\033[0m"
print('Initialize model for evaluation')
tokenizer = AutoTokenizer.from_pretrained(f"{CHATGLM_MODEL_PATH}", revision="v1.1.0", trust_remote_code=True)
model =AutoModel.from_pretrained(f"{CHATGLM_MODEL_PATH}", revision="v1.1.0", trust_remote_code=True).quantize(8).half().cuda()
#model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
llm = model.eval()
print('\nInitialize model for embedding')
from langchain.embeddings import HuggingFaceEmbeddings
llm_embed = HuggingFaceEmbeddings(model_name='shibing624/text2vec-base-chinese')
print(
"\033[91m\033[1m"
+ "\n*****USING ChatGLM-6B. POTENTIALLY SLOW.*****"
+ "\033[0m\033[0m"
)
except:
print(
"\033[91m\033[1m"
+ "\nChatGLM-6B is not properly installed. Falling back to GPT-3.5-turbo."
+ "\033[0m\033[0m"
)
LLM_MODEL = "gpt-3.5-turbo"
if LLM_MODEL.startswith("gpt-4"):
print(
"\033[91m\033[1m"
+ "\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****"
+ "\033[0m\033[0m"
)
if LLM_MODEL.startswith("human"):
print(
"\033[91m\033[1m"
+ "\n*****USING HUMAN INPUT*****"
+ "\033[0m\033[0m"
)
print("\033[94m\033[1m" + "\n*****OBJECTIVE*****\n" + "\033[0m\033[0m")
print(f"{OBJECTIVE}")
if not JOIN_EXISTING_OBJECTIVE:
print("\033[93m\033[1m" + "\n初始任务:" + "\033[0m\033[0m" + f" {INITIAL_TASK}")
else:
print("\033[93m\033[1m" + f"\nJoining to help the objective" + "\033[0m\033[0m")
# Configure OpenAI
openai.api_key = OPENAI_API_KEY
# Llama embedding function
class LlamaEmbeddingFunction(EmbeddingFunction):
def __init__(self):
return
def __call__(self, texts: Documents) -> Embeddings:
embeddings = []
for t in texts:
e = llm_embed.embed(t)
embeddings.append(e)
return embeddings
# ChatgGLM-6b embedding function
class ChatgGLMEmbeddingFunction(EmbeddingFunction):
def __init__(self):
return
def __call__(self, texts: Documents) -> Embeddings:
embeddings = llm_embed.embed_documents(texts)
return embeddings
# Results storage using local ChromaDB
class DefaultResultsStorage:
def __init__(self):
logging.getLogger('chromadb').setLevel(logging.ERROR)
# Create Chroma collection
chroma_persist_dir = "chroma"
chroma_client = chromadb.Client(
settings=chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=chroma_persist_dir,
)
)
metric = "cosine"
if LLM_MODEL.startswith("llama") :
embedding_function = LlamaEmbeddingFunction()
elif LLM_MODEL.startswith("chatglm-6b"):
embedding_function = ChatgGLMEmbeddingFunction()
else:
embedding_function = OpenAIEmbeddingFunction(api_key=OPENAI_API_KEY)
self.collection = chroma_client.get_or_create_collection(
name=RESULTS_STORE_NAME,
metadata={"hnsw:space": metric},
embedding_function=embedding_function,
)
def add(self, task: Dict, result: str, result_id: str):
# Break the function if LLM_MODEL starts with "human" (case-insensitive)
if LLM_MODEL.startswith("human"):
return
# Continue with the rest of the function
embeddings = llm_embed.embed(result) if LLM_MODEL.startswith("llama") else None
if (
len(self.collection.get(ids=[result_id], include=[])["ids"]) > 0
): # Check if the result already exists
self.collection.update(
ids=result_id,
embeddings=embeddings,
documents=result,
metadatas={"task": task["task_name"], "result": result},
)
else:
self.collection.add(
ids=result_id,
embeddings=embeddings,
documents=result,
metadatas={"task": task["task_name"], "result": result},
)
def query(self, query: str, top_results_num: int) -> List[dict]:
count: int = self.collection.count()
if count == 0:
return []
results = self.collection.query(
query_texts=query,
n_results=min(top_results_num, count),
include=["metadatas"]
)
return [item["task"] for item in results["metadatas"][0]]
# Initialize results storage
def try_weaviate():
WEAVIATE_URL = os.getenv("WEAVIATE_URL", "")
WEAVIATE_USE_EMBEDDED = os.getenv("WEAVIATE_USE_EMBEDDED", "False").lower() == "true"
if (WEAVIATE_URL or WEAVIATE_USE_EMBEDDED) and can_import("extensions.weaviate_storage"):
WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY", "")
from extensions.weaviate_storage import WeaviateResultsStorage
print("\nUsing results storage: " + "\033[93m\033[1m" + "Weaviate" + "\033[0m\033[0m")
return WeaviateResultsStorage(OPENAI_API_KEY, WEAVIATE_URL, WEAVIATE_API_KEY, WEAVIATE_USE_EMBEDDED, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE)
return None
def try_pinecone():
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY", "")
if PINECONE_API_KEY and can_import("extensions.pinecone_storage"):
PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT", "")
assert (
PINECONE_ENVIRONMENT
), "\033[91m\033[1m" + "PINECONE_ENVIRONMENT environment variable is missing from .env" + "\033[0m\033[0m"
from extensions.pinecone_storage import PineconeResultsStorage
print("\nUsing results storage: " + "\033[93m\033[1m" + "Pinecone" + "\033[0m\033[0m")
return PineconeResultsStorage(OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_ENVIRONMENT, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE)
return None
def use_chroma():
print("\nUsing results storage: " + "\033[93m\033[1m" + "Chroma (Default)" + "\033[0m\033[0m")
return DefaultResultsStorage()
results_storage = try_weaviate() or try_pinecone() or use_chroma()
# Task storage supporting only a single instance of BabyAGI
class SingleTaskListStorage:
def __init__(self):
self.tasks = deque([])
self.task_id_counter = 0
def append(self, task: Dict):
self.tasks.append(task)
def replace(self, tasks: List[Dict]):
self.tasks = deque(tasks)
def popleft(self):
return self.tasks.popleft()
def is_empty(self):
return False if self.tasks else True
def next_task_id(self):
self.task_id_counter += 1
return self.task_id_counter
def get_task_names(self):
return [t["task_name"] for t in self.tasks]
# Initialize tasks storage
tasks_storage = SingleTaskListStorage()
if COOPERATIVE_MODE in ['l', 'local']:
if can_import("extensions.ray_tasks"):
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).resolve().parent))
from extensions.ray_tasks import CooperativeTaskListStorage
tasks_storage = CooperativeTaskListStorage(OBJECTIVE)
print("\nReplacing tasks storage: " + "\033[93m\033[1m" + "Ray" + "\033[0m\033[0m")
elif COOPERATIVE_MODE in ['d', 'distributed']:
pass
def limit_tokens_from_string(string: str, model: str, limit: int) -> str:
"""Limits the string to a number of tokens (estimated)."""
try:
encoding = tiktoken.encoding_for_model(model)
except:
encoding = tiktoken.encoding_for_model('gpt2') # Fallback for others.
encoded = encoding.encode(string)
return encoding.decode(encoded[:limit])
def openai_call(
prompt: str,
model: str = LLM_MODEL,
temperature: float = OPENAI_TEMPERATURE,
max_tokens: int = 100,
):
while True:
try:
if model.lower().startswith("llama"):
result = llm(prompt[:CTX_MAX],
stop=["### Human"],
echo=False,
temperature=0.2,
top_k=40,
top_p=0.95,
repeat_penalty=1.05,
max_tokens=200)
# print('\n*****RESULT JSON DUMP*****\n')
# print(json.dumps(result))
# print('\n')
return result['choices'][0]['text'].strip()
elif model.lower().startswith("chatglm"):
if CHATGLM_API is not None:
import requests
import json
headers = {
"Content-Type": "application/json",
}
data = {
"prompt": prompt[:CTX_MAX],
"history": []
}
result = requests.post(CHATGLM_API, headers=headers, data=json.dumps(data))
return result.json()['response'].strip()
else:
result, history = llm.chat(tokenizer, prompt[:CTX_MAX], history=[])
# print('\n*****RESULT JSON DUMP*****\n')
# print(json.dumps(result))
# print('\n')
return result.strip()
elif model.lower().startswith("human"):
return user_input_await(prompt)
elif not model.lower().startswith("gpt-"):
# Use completion API
response = openai.Completion.create(
engine=model,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
return response.choices[0].text.strip()
else:
# Use 4000 instead of the real limit (4097) to give a bit of wiggle room for the encoding of roles.
# TODO: different limits for different models.
trimmed_prompt = limit_tokens_from_string(prompt, model, 4000 - max_tokens)
# Use chat completion API
messages = [{"role": "system", "content": trimmed_prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
stop=None,
)
return response.choices[0].message.content.strip()
except openai.error.RateLimitError:
print(
" *** The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.Timeout:
print(
" *** OpenAI API timeout occurred. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.APIError:
print(
" *** OpenAI API error occurred. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.APIConnectionError:
print(
" *** OpenAI API connection error occurred. Check your network settings, proxy configuration, SSL certificates, or firewall rules. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.InvalidRequestError:
print(
" *** OpenAI API invalid request. Check the documentation for the specific API method you are calling and make sure you are sending valid and complete parameters. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
except openai.error.ServiceUnavailableError:
print(
" *** OpenAI API service unavailable. Waiting 10 seconds and trying again. ***"
)
time.sleep(10) # Wait 10 seconds and try again
else:
break
def task_creation_agent(
objective: str, result: Dict, task_description: str, task_list: List[str]
):
prompt = f"""
你要使用任务执行者的结果来创建新的任务,其目标如下: {objective}.
最后完成的任务的结果为: \n{result["data"]}
这一结果是基于这一任务描述: {task_description}.\n"""
if task_list:
prompt += f"这些是未完成的任务: {', '.join(task_list)}\n"
prompt += "根据结果,返回一个需要完成的任务清单,以达到目标。"
if task_list:
prompt += "这些新任务不能与未完成的任务重复。 "
prompt += """
在你的答复中,每行返回一项任务。结果必须是一个编号的列表,格式为::
#. 第一个任务
#. 第二项任务
每个条目的编号后面必须有一个句号。如果你的列表是空的,写上 "目前没有任务要添加"。
除非你的清单是空的,否则不要在你的编号清单前包括任何标题,也不要在你的编号清单后加上任何其他输出。"""
print(f'\n*****任务创建者提示词****\n{prompt}\n')
response = openai_call(prompt, max_tokens=2000)
print(f'\n*****任务创建者提示词****\n{response}\n')
new_tasks = response.split('\n')
new_tasks_list = []
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
if task_name.strip() and task_id.isnumeric():
new_tasks_list.append(task_name)
# print('New task created: ' + task_name)
out = [{"task_name": task_name} for task_name in new_tasks_list]
return out
def prioritization_agent():
task_names = tasks_storage.get_task_names()
bullet_string = '\n'
prompt = f"""
你的任务是确定下列任务的优先次序: {bullet_string + bullet_string.join(task_names)}
考虑你团队的最终目标: {OBJECTIVE}.
任务应从最高优先级到最低优先级排序,其中较高优先级的任务是那些作为前提条件或对实现目标更重要的任务。
不要删除任何任务。将排序后的任务以编号列表的形式返回:
#. 第一个任务
#. 第二项任务
条目必须连续编号,从1开始。每个条目的编号后面必须有一个句号。
在你的排名表之前不要包括任何标题,也不要在你的列表后面加上任何其他输出。"""
print(f'\n****任务排序者提示词****\n{prompt}\n')
response = openai_call(prompt, max_tokens=2000)
print(f'\n****任务排序者提示词****\n{response}\n')
if not response:
print('任务排序者无响应。保持任务列表不变。')
return
new_tasks = response.split("\n") if "\n" in response else [response]
new_tasks_list = []
for task_string in new_tasks:
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
if task_name.strip():
new_tasks_list.append({"task_id": task_id, "task_name": task_name})
return new_tasks_list
# Execute a task based on the objective and five previous tasks
def execution_agent(objective: str, task: str) -> str:
"""
Executes a task based on the given objective and previous context.
Args:
objective (str): The objective or goal for the AI to perform the task.
task (str): The task to be executed by the AI.
Returns:
str: The response generated by the AI for the given task.
"""
context = context_agent(query=objective, top_results_num=5)
# print("\n****RELEVANT CONTEXT****\n")
# print(context)
# print('')
prompt = f'执行一个任务以达成下面指定的目标: {objective}.\n'
if context:
prompt += '综合考虑已经完成的任务:' + '\n'.join(context)
prompt += f'\n你的任务: {task}\n 回应:'
return openai_call(prompt, max_tokens=2000)
# Get the top n completed tasks for the objective
def context_agent(query: str, top_results_num: int):
"""
Retrieves context for a given query from an index of tasks.
Args:
query (str): The query or objective for retrieving context.
top_results_num (int): The number of top results to retrieve.
Returns:
list: A list of tasks as context for the given query, sorted by relevance.
"""
results = results_storage.query(query=query, top_results_num=top_results_num)
# print("****RESULTS****")
# print(results)
return results
# Add the initial task if starting new objective
if not JOIN_EXISTING_OBJECTIVE:
initial_task = {
"task_id": tasks_storage.next_task_id(),
"task_name": INITIAL_TASK
}
tasks_storage.append(initial_task)
def main():
loop = True
while loop:
# As long as there are tasks in the storage...
if not tasks_storage.is_empty():
# Print the task list
print("\033[95m\033[1m" + "\n*****任务列表*****\n" + "\033[0m\033[0m")
for t in tasks_storage.get_task_names():
print(" • " + str(t))
# Step 1: Pull the first incomplete task
task = tasks_storage.popleft()
print("\033[92m\033[1m" + "\n*****后续任务*****\n" + "\033[0m\033[0m")
print(str(task["task_name"]))
# Send to execution function to complete the task based on the context
result = execution_agent(OBJECTIVE, str(task["task_name"]))
print("\033[93m\033[1m" + "\n*****任务结果*****\n" + "\033[0m\033[0m")
print(result)
# Step 2: Enrich result and store in the results storage
# This is where you should enrich the result if needed
enriched_result = {
"data": result
}
# extract the actual result from the dictionary
# since we don't do enrichment currently
# vector = enriched_result["data"]
result_id = f"result_{task['task_id']}"
results_storage.add(task, result, result_id)
# Step 3: Create new tasks and re-prioritize task list
# only the main instance in cooperative mode does that
new_tasks = task_creation_agent(
OBJECTIVE,
enriched_result,
task["task_name"],
tasks_storage.get_task_names(),
)
print('添加新任务')
for new_task in new_tasks:
new_task.update({"task_id": tasks_storage.next_task_id()})
print(str(new_task))
tasks_storage.append(new_task)
if not JOIN_EXISTING_OBJECTIVE:
prioritized_tasks = prioritization_agent()
if prioritized_tasks:
tasks_storage.replace(prioritized_tasks)
# Sleep a bit before checking the task list again
time.sleep(5)
else:
print('Done.')
loop = False
if __name__ == "__main__":
main()