-
Notifications
You must be signed in to change notification settings - Fork 9
/
run_disenvisioner_w_ip.py
377 lines (336 loc) · 14.3 KB
/
run_disenvisioner_w_ip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import argparse
import logging
from PIL import Image
from glob import glob
from tqdm import tqdm
from contextlib import nullcontext
import torch
from diffusers import UNet2DConditionModel
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTextModelWithProjection
from diffusers import StableDiffusionPipeline
from disvisioner_modules.disvisioner import DisVisioner
from envisioner_modules.envisioner import Projector, EnVisioner_IP
from envisioner_modules.attention_processor import EVAttnProcessor2_0_W_IP as EVAttnProcessor, AttnProcessor2_0 as AttnProcessor
from envisioner_modules.resampler_masked import Resampler
from utils import seed_all, is_torch2_available, image_grid
assert is_torch2_available()
import global_var
def set_scales(pipe, scale_object, scale_others, scale_ip):
logging.info(f"==> setting scales: scale_obj {scale_object}, scale_ip {scale_ip}, scale_others {scale_others}")
for attn_processor in pipe.unet.attn_processors.values():
if isinstance(attn_processor, EVAttnProcessor):
attn_processor.scale_object = scale_object
attn_processor.scale_others = scale_others
attn_processor.scale_ip = scale_ip
@torch.inference_mode()
def run_inference(args, unet, disv_image_encoder, disv_text_encoder, image_encoder, disvisioner, envisioner, device, dtype):
# load SD pipeline
pipe = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
torch_dtype=dtype,
).to(device)
# set scales
set_scales(pipe, args.scale_object, args.scale_others, args.scale_ip)
infer_image = args.infer_image
infer_prompt = args.infer_prompt
negative_prompt = args.negative_prompt
print(f"Running for image: {infer_image} with prompt: {infer_prompt}")
# ------------------ prepare textual embedding ------------------
class_name = args.class_name
infer_prompt = infer_prompt.replace("*", class_name)
print(infer_prompt)
prompt_embeds_, negative_prompt_embeds_ = pipe.encode_prompt(
infer_prompt,
device=device,
num_images_per_prompt=args.num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
# ------------------ prepare image embedding using DisEnvisioner ------------------
# read image prompt
image = Image.open(infer_image)
image = image.resize((256, 256))
# get_image_embeds
clip_image = CLIPImageProcessor()(images=[image], return_tensors="pt").pixel_values
clip_image = clip_image.to(device, dtype=dtype)
if torch.backends.mps.is_available():
autocast_ctx = nullcontext()
else:
autocast_ctx = torch.autocast(pipe.device.type)
with autocast_ctx:
# disvisioner
image_features = disv_image_encoder(clip_image.to(device, dtype=dtype), output_hidden_states=True)
image_embeddings = image_features.last_hidden_state
image_embeddings = image_embeddings.detach()
class_ids = pipe.tokenizer(
class_name,
padding="max_length",
truncation=True,
max_length=pipe.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0].to(device).unsqueeze(0)
class_proj = disv_text_encoder(class_ids.to(device)).text_embeds
inj_embedding, obj_map, _ = disvisioner(image_embeddings, class_proj, return_attns=True)
obj_mask =(obj_map > 0.3).int()
# NOTE
# currently the mask is passed through global_var for convinience,
# thus, the batchsize must be 1!
assert obj_mask.shape[0] == 1
global_var.set_value("mask", obj_mask[0].cpu())
# envisioner
# get projected embeds
image_prompt_embeds_object, image_prompt_embeds_others = envisioner.image_proj_model(inj_embedding.float())
uncond_image_prompt_embeds_object, uncond_image_prompt_embeds_others = envisioner.image_proj_model(torch.zeros_like(inj_embedding.float()))
bs_embed, seq_len, _ = image_prompt_embeds_object.shape
image_prompt_embeds_object = image_prompt_embeds_object.repeat(1, args.num_samples, 1).view(bs_embed * args.num_samples, seq_len, -1)
uncond_image_prompt_embeds_object = uncond_image_prompt_embeds_object.repeat(1, args.num_samples, 1).view(bs_embed * args.num_samples, seq_len, -1)
bs_embed, seq_len, _ = image_prompt_embeds_others.shape
image_prompt_embeds_others = image_prompt_embeds_others.repeat(1, args.num_samples, 1).view(bs_embed * args.num_samples, seq_len, -1)
uncond_image_prompt_embeds_others = uncond_image_prompt_embeds_others.repeat(1, args.num_samples, 1).view(bs_embed * args.num_samples, seq_len, -1)
image_embeddings_ip = image_encoder(clip_image, output_hidden_states=True).hidden_states[-2]
uncond_image_embeddings_ip = image_encoder(torch.zeros_like(clip_image), output_hidden_states=True).hidden_states[-2]
image_prompt_embeds_ip = envisioner.image_proj_model_ip(image_embeddings_ip)
uncond_image_prompt_embeds_ip = envisioner.image_proj_model_ip(uncond_image_embeddings_ip)
bs_embed, seq_len, _ = image_prompt_embeds_ip.shape
image_prompt_embeds_ip = image_prompt_embeds_ip.repeat(1, args.num_samples, 1).view(bs_embed * args.num_samples, seq_len, -1)
uncond_image_prompt_embeds_ip = uncond_image_prompt_embeds_ip.repeat(1, args.num_samples, 1).view(bs_embed * args.num_samples, seq_len, -1)
# ------------------ prepare textual and image embeddings ------------------
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds_object, image_prompt_embeds_others, image_prompt_embeds_ip], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds_object, uncond_image_prompt_embeds_others, uncond_image_prompt_embeds_ip], dim=1)
# gen
generator = torch.Generator(device).manual_seed(args.seed) if args.seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds,
height=args.resolution,
width=args.resolution,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=args.guidance_scale,
num_inference_steps=args.num_inference_steps,
generator=generator
).images
# save
gen_images = [image.resize((args.resolution, args.resolution))] + images
grid = image_grid(gen_images, len(gen_images)//(1+args.num_samples), 1+args.num_samples)
# val_file_name = '.'.join(os.path.basename(infer_image).split(".")[:-1])
grid.save(os.path.join(args.output_dir, f'sobj{args.scale_object}_sip{args.scale_ip}_soth{args.scale_others}_[{infer_prompt}]_seed{args.seed}.png'))
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--half_precision",
action="store_true"
)
parser.add_argument(
"--disvisioner_path",
type=str,
default=None,
help="Path to pretrained disvisioner.",
required=True
)
parser.add_argument(
"--token_num",
type=int,
default=1,
help="number of tokens for object"
)
parser.add_argument(
"--pretrained_CLIP",
type=str,
default=None,
help="Path to pretrained disvisioner encoders.",
required=True
)
parser.add_argument(
"--ip_image_encoder_path",
type=str,
)
parser.add_argument(
"--scale_object",
type=float,
default=0.8,
)
parser.add_argument(
"--scale_others",
type=float,
default=0.0,
)
parser.add_argument(
"--scale_ip",
type=float,
default=0.0,
)
parser.add_argument(
"--output_dir",
type=str,
default="disenvisioner",
help="The output directory where the model predictions will be written.",
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images"
),
)
parser.add_argument(
"--infer_image",
type=str,
required=True
)
parser.add_argument(
"--infer_prompt",
type=str,
required=True
)
parser.add_argument(
"--negative_prompt",
type=str,
default="monochrome, lowres, bad anatomy, worst quality, low quality"
)
parser.add_argument(
"--class_name",
type=str,
required=True
)
parser.add_argument(
"--num_samples",
type=int,
default=4
)
parser.add_argument(
"--seed",
type=int,
default=42
)
parser.add_argument(
"--guidance_scale",
type=float,
default=7.5
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=50
)
parser.add_argument(
"--envisioner_path",
type=str,
default=None,
help="Path to pretrained envisioner.",
)
parser.add_argument(
"--object_factor",
type=int,
default=1,
help="factor that determines the number of object tokens. "
)
parser.add_argument(
"--others_factor",
type=int,
default=1,
help="factor that determines the number of other component tokens."
)
args = parser.parse_args()
return args
def main():
logging.basicConfig(level=logging.INFO)
logging.info(f"Run inference...")
args = parse_args()
global_var._init()
# ------------------ Preparation ------------------
os.makedirs(args.output_dir, exist_ok=True)
logging.info(f"Output dir = {args.output_dir}")
if args.seed is not None:
seed_all(args.seed)
# half_precision
if args.half_precision:
dtype = torch.float16
logging.info(f"Running with half precision ({dtype}).")
else:
dtype = torch.float32
# -------------------- Device --------------------
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"Device = {device}")
# -------------------- Models --------------------
# ------------------ 1. Load Unet model and image encoder for ip-adapter ------------------
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.ip_image_encoder_path)
# ------------------ 2. Load models for disvisioner ------------------
disv_text_encoder = CLIPTextModelWithProjection.from_pretrained(args.pretrained_CLIP)
disv_image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_CLIP)
# define disvisioner
disvisioner = DisVisioner(
image_hidden_size=disv_image_encoder.vision_model.config.hidden_size,
text_hidden_size=disv_text_encoder.text_model.config.hidden_size,
output_dim=disv_text_encoder.text_model.config.hidden_size,
token_num=args.token_num, num_refine=2
)
logging.info(f"Load Disvisioner from {args.disvisioner_path}")
disvisioner.load_state_dict(torch.load(args.disvisioner_path, map_location='cpu'), strict=True)
# ------------------ 3. Load envisioner ------------------
# 1.1 define projector
image_projector = Projector(
cross_attention_dim=unet.config.cross_attention_dim, # output dim
input_embedding_dim=disv_text_encoder.text_model.config.hidden_size, # input dim
clip_extra_context_tokens=4,
)
# 1.2 define image projection model for ip-adapter
image_proj_model_ip = Resampler(
dim=unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=16,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4
)
# 2. Define additional CA modules (referred to IP-Adapter)
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None: # attn1
attn_procs[name] = AttnProcessor()
else: # attn2
attn_procs[name] = EVAttnProcessor(hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
num_tokens_object=args.object_factor*4, # number of object tokens
num_tokens_others=args.others_factor*4, # number of other tokens
num_tokens_ip=16
)
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
# 3. Define envisioner (Projector + added adapter_modules)
envisioner = EnVisioner_IP(image_projector, image_proj_model_ip, adapter_modules)
logging.info(f"Load EnVisioner from {args.envisioner_path}")
envisioner.load_state_dict(torch.load(args.envisioner_path),strict=True)
unet.to(device, dtype=dtype)
disv_image_encoder.to(device, dtype=dtype)
disv_text_encoder.to(device, dtype=dtype)
disvisioner.to(device, dtype=dtype)
envisioner.to(device, dtype=dtype)
image_encoder.to(device, dtype=dtype)
run_inference(args, unet, disv_image_encoder, disv_text_encoder, image_encoder, disvisioner, envisioner, device, dtype)
if __name__ == "__main__":
main()