forked from WeilanAnnn/FD-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSNRSSIM.py
276 lines (225 loc) · 7.24 KB
/
PSNRSSIM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from __future__ import division, absolute_import, print_function
import sys
import os
import argparse
import os.path
import random
import numpy as np
from PIL import Image
import scipy.misc
import numpy as np
from numpy.lib.arraypad import _validate_lengths
from scipy.ndimage import uniform_filter, gaussian_filter
from decimal import Decimal
from skimage import io
parser = argparse.ArgumentParser()
parser.add_argument('--gt_dir', default='', help="path to GT images")
parser.add_argument('--result_dir', default='', help="path to dehazed images")
opt = parser.parse_args()
dtype_range = {np.bool_: (False, True),
np.bool8: (False, True),
np.uint8: (0, 255),
np.uint16: (0, 65535),
np.uint32: (0, 2 ** 32 - 1),
np.uint64: (0, 2 ** 64 - 1),
np.int8: (-128, 127),
np.int16: (-32768, 32767),
np.int32: (-2 ** 31, 2 ** 31 - 1),
np.int64: (-2 ** 63, 2 ** 63 - 1),
np.float16: (-1, 1),
np.float32: (-1, 1),
np.float64: (-1, 1)}
def crop(ar, crop_width, copy=False, order='K'):
ar = np.array(ar, copy=False)
crops = _validate_lengths(ar, crop_width)
slices = [slice(a, ar.shape[i] - b) for i, (a, b) in enumerate(crops)]
if copy:
cropped = np.array(ar[slices], order=order, copy=True)
else:
cropped = ar[slices]
return cropped
def compare_ssim(X, Y, win_size=None, gradient=False,
data_range=None, multichannel=False, gaussian_weights=False,
full=False, dynamic_range=None, **kwargs):
if not X.dtype == Y.dtype:
raise ValueError('Input images must have the same dtype.')
if not X.shape == Y.shape:
raise ValueError('Input images must have the same dimensions.')
if dynamic_range is not None:
# warn('`dynamic_range` has been deprecated in favor of '
# '`data_range`. The `dynamic_range` keyword argument '
# 'will be removed in v0.14', skimage_deprecation)
data_range = dynamic_range
if multichannel:
# loop over channels
args = dict(win_size=win_size,
gradient=gradient,
data_range=data_range,
multichannel=False,
gaussian_weights=gaussian_weights,
full=full)
args.update(kwargs)
nch = X.shape[-1]
mssim = np.empty(nch)
if gradient:
G = np.empty(X.shape)
if full:
S = np.empty(X.shape)
for ch in range(nch):
ch_result = compare_ssim(X[..., ch], Y[..., ch], **args)
if gradient and full:
mssim[..., ch], G[..., ch], S[..., ch] = ch_result
elif gradient:
mssim[..., ch], G[..., ch] = ch_result
elif full:
mssim[..., ch], S[..., ch] = ch_result
else:
mssim[..., ch] = ch_result
mssim = mssim.mean()
if gradient and full:
return mssim, G, S
elif gradient:
return mssim, G
elif full:
return mssim, S
else:
return mssim
K1 = kwargs.pop('K1', 0.01)
K2 = kwargs.pop('K2', 0.03)
sigma = kwargs.pop('sigma', 1.5)
if K1 < 0:
raise ValueError("K1 must be positive")
if K2 < 0:
raise ValueError("K2 must be positive")
if sigma < 0:
raise ValueError("sigma must be positive")
use_sample_covariance = kwargs.pop('use_sample_covariance', True)
if win_size is None:
if gaussian_weights:
win_size = 11 # 11 to match Wang et. al. 2004
else:
win_size = 7 # backwards compatibility
if np.any((np.asarray(X.shape) - win_size) < 0):
raise ValueError(
"win_size exceeds image extent. If the input is a multichannel "
"(color) image, set multichannel=True.")
if not (win_size % 2 == 1):
raise ValueError('Window size must be odd.')
if data_range is None:
dmin, dmax = dtype_range[X.dtype.type]
data_range = dmax - dmin
ndim = X.ndim
if gaussian_weights:
# sigma = 1.5 to approximately match filter in Wang et. al. 2004
# this ends up giving a 13-tap rather than 11-tap Gaussian
filter_func = gaussian_filter
filter_args = {'sigma': sigma}
else:
filter_func = uniform_filter
filter_args = {'size': win_size}
# ndimage filters need floating point data
X = X.astype(np.float64)
Y = Y.astype(np.float64)
NP = win_size ** ndim
# filter has already normalized by NP
if use_sample_covariance:
cov_norm = NP / (NP - 1) # sample covariance
else:
cov_norm = 1.0 # population covariance to match Wang et. al. 2004
# compute (weighted) means
ux = filter_func(X, **filter_args)
uy = filter_func(Y, **filter_args)
# compute (weighted) variances and covariances
uxx = filter_func(X * X, **filter_args)
uyy = filter_func(Y * Y, **filter_args)
uxy = filter_func(X * Y, **filter_args)
vx = cov_norm * (uxx - ux * ux)
vy = cov_norm * (uyy - uy * uy)
vxy = cov_norm * (uxy - ux * uy)
R = data_range
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = ((2 * ux * uy + C1,
2 * vxy + C2,
ux ** 2 + uy ** 2 + C1,
vx + vy + C2))
D = B1 * B2
S = (A1 * A2) / D
# to avoid edge effects will ignore filter radius strip around edges
pad = (win_size - 1) // 2
# compute (weighted) mean of ssim
mssim = crop(S, pad).mean()
if gradient:
# The following is Eqs. 7-8 of Avanaki 2009.
grad = filter_func(A1 / D, **filter_args) * X
grad += filter_func(-S / B2, **filter_args) * Y
grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D,
**filter_args)
grad *= (2 / X.size)
if full:
return mssim, grad, S
else:
return mssim, grad
else:
if full:
return mssim, S
else:
return mssim
# SCALE = 8
SCALE = 1
def output_psnr_mse(img_orig, img_out):
squared_error = np.square(img_orig - img_out)
mse = np.mean(squared_error)
psnr = 10 * np.log10(1.0 / mse)
return psnr
def _open_img(img_p):
F = io.imread(img_p).astype(float) / 255.0
h, w, c = F.shape
F = F[:h - h % SCALE, :w - w % SCALE, :]
boundarypixels = SCALE
F = F[boundarypixels:-boundarypixels, boundarypixels:-boundarypixels, :]
return F
def _open_img_ssim(img_p):
F = io.imread(img_p) # .astype(float)
h, w, c = F.shape
F = F[:h - h % SCALE, :w - w % SCALE, :]
boundarypixels = SCALE
F = F[boundarypixels:-boundarypixels, boundarypixels:-boundarypixels, :]
return F
def compute_psnr(ref_im, res_im):
return output_psnr_mse(
_open_img(os.path.join(ref_dir, ref_im)),
_open_img(os.path.join(res_dir, res_im))
)
def compute_mssim(ref_im, res_im):
ref_img = _open_img_ssim(os.path.join(ref_dir, ref_im))
res_img = _open_img_ssim(os.path.join(res_dir , res_im))
channels = []
for i in range(3):
channels.append(compare_ssim(ref_img[:, :, i], res_img[:, :, i],
gaussian_weights=True, use_sample_covariance=False))
return np.mean(channels)
res_dir = opt.gt_dir
ref_dir = opt.result_dir
runtime = -1
cpu = -1
data = -1
other = ""
ref_pngs = sorted([p for p in os.listdir(ref_dir) if p.lower().endswith('png')])
res_pngs = sorted([p for p in os.listdir(res_dir) if p.lower().endswith('png')])
# if not (len(ref_pngs)==5 and len(res_pngs)==5):
# raise Exception('Expected 5 .png images, got %d'%len(res_pngs))
scores = []
scores_ssim = []
data = zip(ref_pngs, res_pngs)
for (ref_im, res_im) in np.array(list(data)):
print(ref_im, res_im,'psnr:',compute_psnr(ref_im, res_im),'ssim:',compute_mssim(ref_im, res_im))
scores.append(compute_psnr(ref_im, res_im))
scores_ssim.append(compute_mssim(ref_im, res_im))
# print(ref_im, res_im)
# print(scores[-1])
psnr = np.mean(scores)
psnr = Decimal(psnr).quantize(Decimal('0.0000'))
mssim = np.mean(scores_ssim)
mssim = Decimal(mssim).quantize(Decimal('0.0000'))
print("\n psnr:\n", psnr,'\n compute ssim:\n',mssim)