-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding.py
167 lines (131 loc) · 5.17 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
# os.chdir(wd)
import warnings
warnings.filterwarnings("ignore")
# from IPython.core.interactiveshell import InteractiveShell
# InteractiveShell.ast_node_interactivity = "all"
show_rows = 30
cover_flg = True
import numpy as np
np.set_printoptions(threshold=show_rows)
import pandas as pd
pd.options.display.max_rows = int(show_rows)
pd.options.display.max_columns = int(show_rows)
import pickle
import gc
from collections import defaultdict
import sys
# sys.exit()
def noCoverWrite(df, file, f=True):
if (not (os.path.isfile(file))) or f:
df.to_csv(file)
print("wrote csv")
else:
print("no cover")
# %% load data
# file_path = "save_embedding/VGCN_seed=3_batch=1024_embedding.npy"
file_path = "save_embedding/Tumor2Graph_seed=5_batch=1024_embedding.npy"
df_y_ori = np.load(file_path)
# print(df_y_ori)
print(df_y_ori.shape)
df_emb_ori = pd.DataFrame(
df_y_ori,
columns=['col_%d' % i for i in range(np.shape(df_y_ori)[1])],
# index=train_data['sample']
)
# df_y_ori = df_y_ori[:6180] ##use train data
## load train data
df_all = pd.read_csv("dataset/v10/df_all_new2.csv")
# print(list(train_df.columns))
# print(list(extra_test_df.columns))
df_all = df_all[df_all["split_type"] == "primary_train"]
print(df_all[["sample", "cancer_type"]])
print(df_emb_ori.shape)
print(df_all[["sample", "cancer_type"]].shape)
df_new = pd.concat([df_emb_ori, df_all[["sample", "cancer_type", "split_type"]]], axis=1)
# df_emb_ori = df_new[df_new["split_type"]=="primary_test"]
df_emb_ori = df_new.dropna(axis=0, how='any')
# df_emb_ori = pd.DataFrame(
# df_y_ori,
# columns=['col_%d'% i for i in range(np.shape(df_y_ori)[1])],
# # index=train_data['sample']
# )
# df_emb_ori["sample"] = train_data["sample"]
# df_emb_ori["cancer_type"] = train_data["cancer_type"]
# sys.exit()
# df_emb = df_emb_ori[np.array(df_y_ori['metastatic']!=1)].copy()
# assert(np.sum((df_y['sample_id'] != df_emb.index))==0)
df_emb = df_emb_ori[[c for c in df_emb_ori.columns if c not in ["sample", "cancer_type", "split_type"]]]
print(df_emb.shape)
print(df_emb)
df_y = df_emb_ori[["cancer_type"]]
df_y.rename(columns={"cancer_type": "true_label"}, inplace=True)
# (df_emb.iloc[0,:] * df_emb.iloc[1,:]).sum()
from sklearn.preprocessing import scale
#### scale process
# df_emb_scaled = pd.DataFrame(scale(df_emb), index=df_emb.index, columns=df_emb.columns)
# df_emb_scaled = df_emb
df_emb = df_emb.applymap(lambda x: np.exp(x))
df_emb_scaled = pd.DataFrame(scale(df_emb), index=df_emb.index, columns=df_emb.columns)
print(df_emb_scaled.head())
# %% hierarchical
# import scipy
# import scipy.cluster.hierarchy as sch
from scipy.cluster.vq import vq, kmeans, whiten
import numpy as np
import matplotlib.pylab as plt
mtd = ['single', 'complete', 'average', 'weighted', 'ward']
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster, distance
cancre_type = pd.DataFrame()
print(df_emb_ori['cancer_type'].unique())
x = df_emb_ori['cancer_type'].unique()
print(list(filter(lambda v: v == v, x)))
y = list(filter(lambda v: v == v, x))
cancre_type['cancer'] = np.sort(y)
cancre_type['clstr'] = 4
df_y['hierachical_separate_clstr'] = np.nan
df_y["sample_id"] = df_emb_ori["sample"]
Cohort = []
nums = []
# %%
for i in range(len(cancre_type['cancer'])):
# i = 0
cancre_type_ = cancre_type['cancer'][i]
# n_clstrs = cluster_num[cancre_type_]
num = (df_y['true_label'] == cancre_type_).sum()
print(cancre_type_)
print('num: %d' % num)
Cohort.append(cancre_type_)
nums.append(num)
if num == 1:
continue
df_ = df_emb_scaled.loc[np.array(df_y['true_label'] == cancre_type_), :].copy()
j = 3
disMat = distance.pdist(df_, 'euclidean')
Z = linkage(disMat, mtd[j])
# f = fcluster(Z,6,'distance')
fig = plt.figure(figsize=(30, 18))
dn = dendrogram(Z)
# plt.show()
plt.savefig('cluster_ward_dna_rna_methy/%2d_%s_%s.png' % (i, cancre_type_, mtd[j]))
plt.close()
clstr = fcluster(Z, t=len(np.unique(dn['color_list'])) - 1, criterion='maxclust')
# clstr= fcluster(Z, t=4, criterion='maxclust')
# assert(df_y.loc[df_y['true_label']==cancre_type_,'hierachical_separate_clstr'].notnull().sum()==0)
df_y.loc[df_y['true_label'] == cancre_type_, 'hierachical_separate_clstr'] = clstr
print(len(np.unique(dn['color_list'])))
for n in range(2, 5):
# if not n!=n:
# clstr= fcluster(Z, t=len(np.unique(dn['color_list']))-1, criterion='maxclust')
##
# clstr= fcluster(Z, t=n, criterion='maxclust')
clstr = fcluster(Z, t=n, criterion='maxclust')
print("cluster num:", len(set(clstr)))
# assert(df_y.loc[df_y['true_label']==cancre_type_,'hierachical_separate_clstr'].notnull().sum()==0)
df_y.loc[df_y['true_label'] == cancre_type_, 'hierachical_separate_clstr_' + str(n)] = clstr
print(df_y['hierachical_separate_clstr'])
print(df_y['hierachical_separate_clstr'].isnull().sum())
dataframe = pd.DataFrame({'Cohort': Cohort, 'numbers': nums})
dataframe.to_csv("cancer.csv", index=False, sep=',')
# assert(df_y['hierachical_separate_clstr'].isnull().sum()==0)
noCoverWrite(df_y, 'output/dna_rna_methy_cluster_result.csv')