-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_plotting.py
932 lines (737 loc) · 30.1 KB
/
my_plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
import warnings
from typing import Union, Optional, Iterable
from matplotlib.ticker import MaxNLocator
from matplotlib import pyplot as plt
import matplotlib as mpl
from scipy import stats
import pandas as pd
import numpy as np
from lifelines.utils import coalesce, CensoringType, _group_event_table_by_intervals
__all__ = [
"add_at_risk_counts",
"plot_lifetimes",
"plot_interval_censored_lifetimes",
"qq_plot",
"cdf_plot",
"rmst_plot",
"loglogs_plot",
]
def _iloc(x, i):
"""
Returns the item at index i or items at indices i from x,
where x is a numpy array or pd.Series.
"""
try:
return x.iloc[i]
except AttributeError:
return x[i]
def get_distribution_name_of_lifelines_model(model):
return model._class_name.replace("Fitter", "").replace("AFT", "").lower()
def create_scipy_stats_model_from_lifelines_model(model):
from lifelines.fitters import KnownModelParametricUnivariateFitter
is_univariate_model = isinstance(model, KnownModelParametricUnivariateFitter)
dist = get_distribution_name_of_lifelines_model(model)
if not (is_univariate_model):
raise TypeError(
"Cannot use qq-plot with this model. See notes here: https://lifelines.readthedocs.io/en/latest/Examples.html?highlight=qq_plot#selecting-a-parametric-model-using-qq-plots"
)
if dist == "weibull":
scipy_dist = "weibull_min"
sparams = (model.rho_, 0, model.lambda_)
elif dist == "lognormal":
scipy_dist = "lognorm"
sparams = (model.sigma_, 0, np.exp(model.mu_))
elif dist == "loglogistic":
scipy_dist = "fisk"
sparams = (model.beta_, 0, model.alpha_)
elif dist == "exponential":
scipy_dist = "expon"
sparams = (0, model.lambda_)
else:
raise NotImplementedError("Distribution not implemented in SciPy")
return getattr(stats, scipy_dist)(*sparams)
def cdf_plot(model, timeline=None, ax=None, **plot_kwargs):
"""
This plot compares the empirical CDF (derived by KaplanMeier) vs the model CDF.
Parameters
------------
model: lifelines univariate model
timeline: iterable
ax: matplotlib axis
"""
from lifelines import KaplanMeierFitter
if ax is None:
ax = plt.gca()
if timeline is None:
timeline = model.timeline
COL_EMP = "empirical CDF"
if CensoringType.is_left_censoring(model):
empirical_kmf = KaplanMeierFitter().fit_left_censoring(
model.durations, model.event_observed, label=COL_EMP, timeline=timeline, weights=model.weights, entry=model.entry
)
elif CensoringType.is_right_censoring(model):
empirical_kmf = KaplanMeierFitter().fit_right_censoring(
model.durations, model.event_observed, label=COL_EMP, timeline=timeline, weights=model.weights, entry=model.entry
)
elif CensoringType.is_interval_censoring(model):
empirical_kmf = KaplanMeierFitter().fit_interval_censoring(
model.lower_bound, model.upper_bound, label=COL_EMP, timeline=timeline, weights=model.weights, entry=model.entry
)
empirical_kmf.plot_cumulative_density(ax=ax, **plot_kwargs)
dist = get_distribution_name_of_lifelines_model(model)
dist_object = create_scipy_stats_model_from_lifelines_model(model)
ax.plot(timeline, dist_object.cdf(timeline), label="fitted %s" % dist, **plot_kwargs)
ax.legend()
return ax
def rmst_plot(model, model2=None, t=np.inf, ax=None, text_position=None, **plot_kwargs):
"""
This functions plots the survival function of the model plus it's area-under-the-curve (AUC) up
until the point ``t``. The AUC is known as the restricted mean survival time (RMST).
To compare the difference between two models' survival curves, you can supply an
additional model in ``model2``.
Parameters
-----------
model: lifelines.UnivariateFitter
model2: lifelines.UnivariateFitter, optional
used to compute the delta RMST of two models
t: float
the upper bound of the expectation
ax: axis
text_position: tuple
move the text position of the RMST.
Examples
---------
.. code:: python
from lifelines.utils import restricted_mean_survival_time
from lifelines.datasets import load_waltons
from lifelines.plotting import rmst_plot
df = load_waltons()
ix = df['group'] == 'miR-137'
T, E = df['T'], df['E']
time_limit = 50
kmf_exp = KaplanMeierFitter().fit(T[ix], E[ix], label='exp')
kmf_con = KaplanMeierFitter().fit(T[~ix], E[~ix], label='control')
ax = plt.subplot(311)
rmst_plot(kmf_exp, t=time_limit, ax=ax)
ax = plt.subplot(312)
rmst_plot(kmf_con, t=time_limit, ax=ax)
ax = plt.subplot(313)
rmst_plot(kmf_exp, model2=kmf_con, t=time_limit, ax=ax)
"""
from lifelines.utils import restricted_mean_survival_time
if ax is None:
ax = plt.gca()
rmst = restricted_mean_survival_time(model, t=t)
c = ax._get_lines.get_next_color()
model.plot_survival_function(ax=ax, color=c, ci_show=False, **plot_kwargs)
if text_position is None:
text_position = (np.percentile(model.timeline, 10), 0.15)
if model2 is not None:
c2 = ax._get_lines.get_next_color()
rmst2 = restricted_mean_survival_time(model2, t=t)
model2.plot_survival_function(ax=ax, color=c2, ci_show=False, **plot_kwargs)
timeline = np.unique(model.timeline.tolist() + model2.timeline.tolist() + [t])
predict1 = model.predict(timeline).loc[:t]
predict2 = model2.predict(timeline).loc[:t]
# positive
ax.fill_between(
timeline[timeline <= t],
predict1,
predict2,
where=predict1 > predict2,
step="post",
facecolor="w",
hatch="|",
edgecolor="grey",
)
# negative
ax.fill_between(
timeline[timeline <= t],
predict1,
predict2,
where=predict1 < predict2,
step="post",
hatch="-",
facecolor="w",
edgecolor="grey",
)
ax.text(
text_position[0], text_position[1], "RMST(%s) -\n RMST(%s)=%.3f" % (model._label, model2._label, rmst - rmst2)
) # dynamically pick this.
else:
rmst = restricted_mean_survival_time(model, t=t)
sf_exp_at_limit = model.predict(np.append(model.timeline, t)).sort_index().loc[:t]
ax.fill_between(sf_exp_at_limit.index, sf_exp_at_limit.values, step="post", color=c, alpha=0.25)
ax.text(text_position[0], text_position[1], "RMST=%.3f" % rmst) # dynamically pick this.
ax.axvline(t, ls="--", color="k")
ax.set_ylim(0, 1)
return ax
def qq_plot(model, ax=None, **plot_kwargs):
"""
Produces a quantile-quantile plot of the empirical CDF against
the fitted parametric CDF. Large deviances away from the line y=x
can invalidate a model (though we expect some natural deviance in the tails).
Parameters
-----------
model: obj
A fitted lifelines univariate parametric model, like ``WeibullFitter``
plot_kwargs:
kwargs for the plot.
Returns
--------
ax:
The axes which was used.
Examples
---------
.. code:: python
from lifelines import *
from lifelines.plotting import qq_plot
from lifelines.datasets import load_rossi
df = load_rossi()
wf = WeibullFitter().fit(df['week'], df['arrest'])
qq_plot(wf)
Notes
------
The interval censoring case uses the mean between the upper and lower bounds.
"""
from lifelines.utils import qth_survival_times
from lifelines import KaplanMeierFitter
if ax is None:
ax = plt.gca()
dist = get_distribution_name_of_lifelines_model(model)
dist_object = create_scipy_stats_model_from_lifelines_model(model)
COL_EMP = "empirical quantiles"
COL_THEO = "fitted %s quantiles" % dist
if CensoringType.is_left_censoring(model):
kmf = KaplanMeierFitter().fit_left_censoring(
model.durations, model.event_observed, label=COL_EMP, weights=model.weights, entry=model.entry
)
sf, cdf = kmf.survival_function_[COL_EMP], kmf.cumulative_density_[COL_EMP]
elif CensoringType.is_right_censoring(model):
kmf = KaplanMeierFitter().fit_right_censoring(
model.durations, model.event_observed, label=COL_EMP, weights=model.weights, entry=model.entry
)
sf, cdf = kmf.survival_function_[COL_EMP], kmf.cumulative_density_[COL_EMP]
elif CensoringType.is_interval_censoring(model):
kmf = KaplanMeierFitter().fit_interval_censoring(
model.lower_bound, model.upper_bound, label=COL_EMP, weights=model.weights, entry=model.entry
)
sf, cdf = kmf.survival_function_.mean(1), kmf.cumulative_density_[COL_EMP + "_lower"]
q = np.unique(cdf.values)
quantiles = qth_survival_times(1 - q, sf)
quantiles[COL_THEO] = dist_object.ppf(q)
quantiles = quantiles.replace([-np.inf, 0, np.inf], np.nan).dropna()
max_, min_ = quantiles[COL_EMP].max(), quantiles[COL_EMP].min()
quantiles.plot.scatter(COL_THEO, COL_EMP, c="none", edgecolor="k", lw=0.5, ax=ax)
ax.plot([min_, max_], [min_, max_], c="k", ls=":", lw=1.0)
ax.set_ylim(min_, max_)
ax.set_xlim(min_, max_)
return ax
def is_latex_enabled():
"""
Returns True if LaTeX is enabled in matplotlib's rcParams,
False otherwise
"""
import matplotlib as mpl
return mpl.rcParams["text.usetex"]
def remove_spines(ax, sides):
"""
Remove spines of axis.
Parameters:
ax: axes to operate on
sides: list of sides: top, left, bottom, right
Examples:
removespines(ax, ['top'])
removespines(ax, ['top', 'bottom', 'right', 'left'])
"""
for side in sides:
ax.spines[side].set_visible(False)
return ax
def move_spines(ax, sides, dists):
"""
Move the entire spine relative to the figure.
Parameters:
ax: axes to operate on
sides: list of sides to move. Sides: top, left, bottom, right
dists: list of float distances to move. Should match sides in length.
Example:
move_spines(ax, sides=['left', 'bottom'], dists=[-0.02, 0.1])
"""
for side, dist in zip(sides, dists):
ax.spines[side].set_position(("axes", dist))
return ax
def remove_ticks(ax, x=False, y=False):
"""
Remove ticks from axis.
Parameters:
ax: axes to work on
x: if True, remove xticks. Default False.
y: if True, remove yticks. Default False.
Examples:
removeticks(ax, x=True)
removeticks(ax, x=True, y=True)
"""
if x:
ax.xaxis.set_ticks_position("none")
if y:
ax.yaxis.set_ticks_position("none")
return ax
def add_at_risk_counts(*fitters,cluster="At risk", labels: Optional[Union[Iterable, bool]] = None, rows_to_show=None, ypos=-0.6, ax=None, **kwargs):
"""
Add counts showing how many individuals were at risk, censored, and observed, at each time point in
survival/hazard plots.
Tip: you may want to call ``plt.tight_layout()`` afterwards.
Parameters
----------
fitters:
One or several fitters, for example KaplanMeierFitter, WeibullFitter,
NelsonAalenFitter, etc...
ax:
a matplotlib axes
labels:
provide labels for the fitters, default is to use the provided fitter label. Set to
False for no labels.
rows_to_show: list
list of a subset of {'At risk', 'Censored', 'Events'}. Default shows all columns.
ypos:
increase to move the table down further.
Returns
--------
ax:
The axes which was used.
Examples
--------
.. code:: python
# First train some fitters and plot them
fig = plt.figure()
ax = plt.subplot(111)
f1 = KaplanMeierFitter()
f1.fit(data)
f1.plot(ax=ax)
f2 = KaplanMeierFitter()
f2.fit(data)
f2.plot(ax=ax)
# There are equivalent
add_at_risk_counts(f1, f2)
add_at_risk_counts(f1, f2, ax=ax, fig=fig)
# This overrides the labels
add_at_risk_counts(f1, f2, labels=['fitter one', 'fitter two'])
# This hides the labels
add_at_risk_counts(f1, f2, labels=False)
References
-----------
Morris TP, Jarvis CI, Cragg W, et al. Proposals on Kaplan–Meier plots in medical research and a survey of stakeholder views: KMunicate. BMJ Open 2019;9:e030215. doi:10.1136/bmjopen-2019-030215
"""
if ax is None:
ax = plt.gca()
fig = kwargs.pop("fig", None)
if fig is None:
fig = plt.gcf()
if labels is None:
labels = [f._label for f in fitters]
elif labels is False:
labels = [None] * len(fitters)
if rows_to_show is None:
rows_to_show = ["At risk", "Censored", "Events"]
n_rows = len(rows_to_show)
# Create another axes where we can put size ticks
ax2 = plt.twiny(ax=ax)
# Move the ticks below existing axes
# Appropriate length scaled for 6 inches. Adjust for figure size.
ax_height = (ax.get_position().y1 - ax.get_position().y0) * fig.get_figheight() # axis height
ax2_ypos = ypos / ax_height
move_spines(ax2, ["bottom"], [ax2_ypos])
# move_spines(ax2, ["left"], [0.5])
# Hide all fluff
remove_spines(ax2, ["top", "right", "bottom", "left"])
# Set ticks and labels on bottom
ax2.xaxis.tick_bottom()
# Set limit
min_time, max_time = ax.get_xlim()
ax2.set_xlim(min_time, max_time)
# Set ticks to kwarg or visible ticks
xticks = kwargs.pop("xticks", None)
if xticks is None:
xticks = [xtick for xtick in ax.get_xticks() if min_time <= xtick <= max_time]
ax2.set_xticks(xticks)
# Remove ticks, need to do this AFTER moving the ticks
remove_ticks(ax2, x=True, y=True)
ticklabels = []
for tick in ax2.get_xticks():
lbl = ""
# Get counts at tick
counts = []
for f in fitters:
# this is a messy:
# a) to align with R (and intuition), we do a subtraction off the at_risk column
# b) we group by the tick intervals
# c) we want to start at 0, so we give it it's own interval
event_table_slice = (
f.event_table.assign(at_risk=lambda x: x.at_risk - x.removed)
.loc[:tick, ["at_risk", "censored", "observed"]]
.agg({"at_risk": "min", "censored": "sum", "observed": "sum"})
.rename({"at_risk": "At risk", "censored": "Censored", "observed": "Events"})
)
counts.extend([int(c) for c in event_table_slice.loc[rows_to_show]])
if tick == ax2.get_xticks()[0]:
max_length = len(str(max(counts)))
for i, c in enumerate(counts):
if i % n_rows == 0:
if is_latex_enabled():
lbl += ("\n" if i > 0 else "") + r"\textbf{%s}" % labels[int(i / n_rows)] + "\n"
else:
lbl += ("\n" if i > 0 else "") + r"%s" % labels[int(i / n_rows)] + "\n"
l = rows_to_show[i % n_rows]
l = {"At risk": f" {cluster}: ", "Censored": "Censored ", "Events": " Events "}.get(l)
# s = "{} ".format(l.rjust(10, " ")) + "{{:>{}d}}\n".format(max_length)
s = "{} ".format(l.ljust(10, " ")) + "{{:>{}d}}\n".format(4)
lbl += s.format(c)
else:
# Create tick label
lbl += ""
for i, c in enumerate(counts):
if i % n_rows == 0 and i > 0:
lbl += "\n\n"
s = "\n{}"
lbl += s.format(c)
ticklabels.append(lbl)
# Align labels to the right so numbers can be compared easily
ax2.set_xticklabels(ticklabels, ha="right", **kwargs)
return ax,ticklabels
def plot_interval_censored_lifetimes(
lower_bound,
upper_bound,
entry=None,
left_truncated=False,
sort_by_lower_bound=True,
event_observed_color="#A60628",
event_right_censored_color="#348ABD",
ax=None,
**kwargs
):
"""
Returns a lifetime plot for interval censored data.
Parameters
-----------
lower_bound: (n,) numpy array or pd.Series
the start of the period the subject experienced the event in.
upper_bound: (n,) numpy array or pd.Series
the end of the period the subject experienced the event in. If the value is equal to the corresponding value in lower_bound, then
the individual's event was observed (not censored).
entry: (n,) numpy array or pd.Series
offsetting the births away from t=0. This could be from left-truncation, or delayed entry into study.
left_truncated: boolean
if entry is provided, and the data is left-truncated, this will display additional information in the plot to reflect this.
sort_by_lower_bound: boolean
sort by the lower_bound vector
event_observed_color: str
default: "#A60628"
event_right_censored_color: str
default: "#348ABD"
applies to any individual with an upper bound of infinity.
Returns
-------
ax:
Examples
---------
.. code:: python
import pandas as pd
import numpy as np
from lifelines.plotting import plot_interval_censored_lifetimes
df = pd.DataFrame({'lb':[20,15,30, 10, 20, 30], 'ub':[25, 15, np.infty, 20, 20, np.infty]})
ax = plot_interval_censored_lifetimes(lower_bound=df['lb'], upper_bound=df['ub'])
"""
if ax is None:
ax = plt.gca()
# If lower_bounds is pd.Series with non-default index, then use index values as y-axis labels.
label_plot_bars = type(lower_bound) is pd.Series and type(lower_bound.index) is not pd.RangeIndex
N = lower_bound.shape[0]
if N > 25:
warnings.warn("For less visual clutter, you may want to subsample to less than 25 individuals.")
assert upper_bound.shape[0] == N
if sort_by_lower_bound:
ix = np.argsort(lower_bound, 0)
upper_bound = _iloc(upper_bound, ix)
lower_bound = _iloc(lower_bound, ix)
if entry:
entry = _iloc(lower_bound, ix)
if entry is None:
entry = np.zeros(N)
for i in range(N):
if np.isposinf(_iloc(upper_bound, i)):
c = event_right_censored_color
ax.hlines(i, _iloc(entry, i), _iloc(lower_bound, i), color=c, lw=1.5)
else:
c = event_observed_color
ax.hlines(i, _iloc(entry, i), _iloc(upper_bound, i), color=c, lw=1.5)
if _iloc(lower_bound, i) == _iloc(upper_bound, i):
ax.scatter(_iloc(lower_bound, i), i, color=c, marker="o", s=13)
else:
ax.scatter(_iloc(lower_bound, i), i, color=c, marker=">", s=13)
ax.scatter(_iloc(upper_bound, i), i, color=c, marker="<", s=13)
if left_truncated:
ax.hlines(i, 0, _iloc(entry, i), color=c, lw=1.0, linestyle="--")
if label_plot_bars:
ax.set_yticks(range(0, N))
ax.set_yticklabels(lower_bound.index)
else:
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_xlim(0)
ax.set_ylim(-0.5, N)
return ax
def plot_lifetimes(
durations,
event_observed=None,
entry=None,
left_truncated=False,
sort_by_duration=True,
event_observed_color="#A60628",
event_censored_color="#348ABD",
ax=None,
**kwargs
):
"""
Returns a lifetime plot, see examples: https://lifelines.readthedocs.io/en/latest/Survival%20Analysis%20intro.html#Censoring
Parameters
-----------
durations: (n,) numpy array or pd.Series
duration subject was observed for.
event_observed: (n,) numpy array or pd.Series
array of booleans: True if event observed, else False.
entry: (n,) numpy array or pd.Series
offsetting the births away from t=0. This could be from left-truncation, or delayed entry into study.
left_truncated: boolean
if entry is provided, and the data is left-truncated, this will display additional information in the plot to reflect this.
sort_by_duration: boolean
sort by the duration vector
event_observed_color: str
default: "#A60628"
event_censored_color: str
default: "#348ABD"
Returns
-------
ax:
Examples
---------
.. code:: python
from lifelines.datasets import load_waltons
from lifelines.plotting import plot_lifetimes
T, E = load_waltons()["T"], load_waltons()["E"]
ax = plot_lifetimes(T.loc[:50], event_observed=E.loc[:50])
"""
if ax is None:
ax = plt.gca()
# If durations is pd.Series with non-default index, then use index values as y-axis labels.
label_plot_bars = type(durations) is pd.Series and type(durations.index) is not pd.RangeIndex
N = durations.shape[0]
if N > 25:
warnings.warn("For less visual clutter, you may want to subsample to less than 25 individuals.")
if event_observed is None:
event_observed = np.ones(N, dtype=bool)
if entry is None:
entry = np.zeros(N)
assert durations.shape[0] == N
assert event_observed.shape[0] == N
if sort_by_duration:
# order by length of lifetimes;
ix = np.argsort(entry + durations, 0)
durations = _iloc(durations, ix)
event_observed = _iloc(event_observed, ix)
entry = _iloc(entry, ix)
for i in range(N):
c = event_observed_color if _iloc(event_observed, i) else event_censored_color
ax.hlines(i, _iloc(entry, i), _iloc(entry, i) + _iloc(durations, i), color=c, lw=1.5)
if left_truncated:
ax.hlines(i, 0, _iloc(entry, i), color=c, lw=1.0, linestyle="--")
m = "" if not _iloc(event_observed, i) else "o"
ax.scatter(_iloc(entry, i) + _iloc(durations, i), i, color=c, marker=m, s=13)
if label_plot_bars:
ax.set_yticks(range(0, N))
ax.set_yticklabels(durations.index)
else:
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
ax.set_xlim(0)
ax.set_ylim(-0.5, N)
return ax
def set_kwargs_color(kwargs):
kwargs["color"] = coalesce(kwargs.get("c"), kwargs.get("color"), kwargs["ax"]._get_lines.get_next_color())
def set_kwargs_drawstyle(kwargs, default="steps-post"):
kwargs["drawstyle"] = kwargs.get("drawstyle", default)
def set_kwargs_label(kwargs, cls):
kwargs["label"] = kwargs.get("label", cls._label)
def create_dataframe_slicer(iloc, loc, timeline):
if (loc is not None) and (iloc is not None):
raise ValueError("Cannot set both loc and iloc in call to .plot().")
user_did_not_specify_certain_indexes = (iloc is None) and (loc is None)
user_submitted_slice = slice(timeline.min(), timeline.max()) if user_did_not_specify_certain_indexes else coalesce(loc, iloc)
get_method = "iloc" if iloc is not None else "loc"
return lambda df: getattr(df, get_method)[user_submitted_slice]
def loglogs_plot(cls, loc=None, iloc=None, show_censors=False, censor_styles=None, ax=None, **kwargs):
"""
Specifies a plot of the log(-log(SV)) versus log(time) where SV is the estimated survival function.
"""
def loglog(s):
return np.log(-np.log(s))
if (loc is not None) and (iloc is not None):
raise ValueError("Cannot set both loc and iloc in call to .plot().")
if censor_styles is None:
censor_styles = {}
if ax is None:
ax = plt.gca()
kwargs["ax"] = ax
set_kwargs_color(kwargs)
set_kwargs_drawstyle(kwargs)
dataframe_slicer = create_dataframe_slicer(iloc, loc, cls.timeline)
# plot censors
colour = kwargs["color"]
if show_censors and cls.event_table["censored"].sum() > 0:
cs = {"marker": "|", "ms": 12, "mew": 1}
cs.update(censor_styles)
times = dataframe_slicer(cls.event_table.loc[(cls.event_table["censored"] > 0)]).index.values.astype(float)
v = cls.predict(times)
ax.plot(np.log(times), loglog(v), linestyle="None", color=colour, **cs)
# plot estimate
sliced_estimates = dataframe_slicer(loglog(cls.survival_function_))
sliced_estimates["log(timeline)"] = np.log(sliced_estimates.index)
sliced_estimates.plot(x="log(timeline)", **kwargs)
ax.set_xlabel("log(timeline)")
ax.set_ylabel("log(-log(survival_function_))")
return ax
def _plot_estimate(
cls,
estimate=None, # string like "survival_function_", "cumulative_density_", "hazard_", "cumulative_hazard_"
loc=None,
iloc=None,
show_censors=False,
censor_styles=None,
ci_legend=False,
ci_force_lines=False,
ci_only_lines=False,
ci_no_lines=False,
ci_alpha=0.25,
ci_show=True,
at_risk_counts=False,
logx: bool = False,
ax=None,
**kwargs
):
"""
Plots a pretty figure of estimates
Matplotlib plot arguments can be passed in inside the kwargs, plus
Parameters
-----------
show_censors: bool
place markers at censorship events. Default: False
censor_styles: bool
If show_censors, this dictionary will be passed into the plot call.
ci_show: bool
show confidence intervals. Default: True
ci_alpha: bool
the transparency level of the confidence interval. Default: 0.3
ci_force_lines: bool
make the confidence intervals to be line plots (versus default shaded areas + lines). Default: False
Deprecated: use ``ci_only_lines`` instead.
ci_only_lines: bool
make the confidence intervals to be line plots (versus default shaded areas + lines). Default: False.
ci_no_lines: bool
Only show the shaded area, with no boarding lines. Default: False
ci_legend: bool
if ci_force_lines is True, this is a boolean flag to add the lines' labels to the legend. Default: False
at_risk_counts: bool
show group sizes at time points. See function ``add_at_risk_counts`` for details. Default: False
loc: slice
specify a time-based subsection of the curves to plot, ex:
>>> model.plot(loc=slice(0.,10.))
will plot the time values between t=0. and t=10.
iloc: slice
specify a location-based subsection of the curves to plot, ex:
>>> model.plot(iloc=slice(0,10))
will plot the first 10 time points.
logx: bool
Use log scaling on x axis
Returns
-------
ax:
a pyplot axis object
"""
if ci_force_lines:
warnings.warn(
"ci_force_lines is deprecated. Use ci_only_lines instead (no functional difference, only a name change).",
DeprecationWarning,
)
ci_only_lines = ci_force_lines
plot_estimate_config = PlotEstimateConfig(cls, estimate, loc, iloc, show_censors, censor_styles, logx, ax, **kwargs)
dataframe_slicer = create_dataframe_slicer(iloc, loc, cls.timeline)
if show_censors and cls.event_table["censored"].sum() > 0:
cs = {"marker": "+", "ms": 12, "mew": 1}
cs.update(plot_estimate_config.censor_styles)
censored_times = dataframe_slicer(cls.event_table.loc[(cls.event_table["censored"] > 0)]).index.values.astype(float)
v = plot_estimate_config.predict_at_times(censored_times).values
plot_estimate_config.ax.plot(censored_times, v, linestyle="None", color=plot_estimate_config.colour, **cs)
dataframe_slicer(plot_estimate_config.estimate_).rename(columns=lambda _: plot_estimate_config.kwargs.pop("label")).plot(
logx=plot_estimate_config.logx, **plot_estimate_config.kwargs
)
# plot confidence intervals
if ci_show:
if ci_only_lines:
# see https://github.com/CamDavidsonPilon/lifelines/issues/928
with warnings.catch_warnings():
warnings.simplefilter("ignore")
(
dataframe_slicer(plot_estimate_config.confidence_interval_)
.rename(columns=lambda s: ("" if ci_legend else "_") + s)
.plot(
linestyle="-",
linewidth=1,
color=[plot_estimate_config.colour],
drawstyle=plot_estimate_config.kwargs["drawstyle"],
alpha=0.6,
logx=plot_estimate_config.logx,
ax=plot_estimate_config.ax,
)
)
else:
x = dataframe_slicer(plot_estimate_config.confidence_interval_).index.values.astype(float)
lower = dataframe_slicer(plot_estimate_config.confidence_interval_.iloc[:, [0]]).values[:, 0]
upper = dataframe_slicer(plot_estimate_config.confidence_interval_.iloc[:, [1]]).values[:, 0]
if plot_estimate_config.kwargs["drawstyle"] == "default":
step = None
elif plot_estimate_config.kwargs["drawstyle"].startswith("step"):
step = plot_estimate_config.kwargs["drawstyle"].replace("steps-", "")
plot_estimate_config.ax.fill_between(
x,
lower,
upper,
alpha=ci_alpha,
color=plot_estimate_config.colour,
linewidth=0.0 if ci_no_lines else 1.0,
step=step,
)
if at_risk_counts:
add_at_risk_counts(cls, ax=plot_estimate_config.ax)
plt.tight_layout()
return plot_estimate_config.ax
class PlotEstimateConfig:
def __init__(self, cls, estimate: Union[str, pd.DataFrame], loc, iloc, show_censors, censor_styles, logx, ax, **kwargs):
self.censor_styles = coalesce(censor_styles, {})
if ax is None:
ax = plt.gca()
kwargs["ax"] = ax
set_kwargs_color(kwargs)
set_kwargs_drawstyle(kwargs)
set_kwargs_label(kwargs, cls)
self.loc = loc
self.iloc = iloc
self.show_censors = show_censors
# plot censors
self.ax = ax
self.colour = kwargs["color"]
self.logx = logx
self.kwargs = kwargs
if isinstance(estimate, str):
self.estimate_ = getattr(cls, estimate)
self.confidence_interval_ = getattr(cls, "confidence_interval_" + estimate)
self.predict_at_times = getattr(cls, estimate + "at_times")
else:
self.estimate_ = estimate
self.confidence_interval_ = kwargs.pop("confidence_intervals")