-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdocument_nodes.py
295 lines (256 loc) · 10.7 KB
/
document_nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import fitz # PyMuPDF
import torch
from PIL import Image
import numpy as np
import folder_paths
from .utils import strip_path
from docx import Document
class DocumentLoaderNode:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.lower().endswith((".pdf", ".txt", ".doc", ".docx"))]
return {"required": {"file_path": (sorted(files),)}}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("parsed_text",)
FUNCTION = "load_document"
CATEGORY = "document_processing"
def load_document(self, file_path):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
_, ext = os.path.splitext(full_path)
if ext.lower() == '.pdf':
return (self.parse_pdf(full_path),)
elif ext.lower() in ['.txt', '.doc', '.docx']:
return (self.parse_text(full_path),)
else:
raise ValueError(f"Unsupported file type: {ext}")
def parse_pdf(self, file_path):
text = ""
with fitz.open(file_path) as doc:
for page in doc:
text += page.get_text()
return text
def parse_text(self, file_path):
_, ext = os.path.splitext(file_path)
if ext.lower() == '.txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif ext.lower() in ['.doc', '.docx']:
doc = Document(file_path)
return "\n".join([para.text for para in doc.paragraphs])
@classmethod
def IS_CHANGED(cls, file_path):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
return full_path
@classmethod
def VALIDATE_INPUTS(cls, file_path):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
return os.path.isfile(full_path)
class PDFToImageNode:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.lower().endswith(".pdf")]
return {
"required": {
"file_path": (sorted(files),),
"start_page": ("INT", {"default": 1, "min": 1, "max": 10000}),
"end_page": ("INT", {"default": 1, "min": 1, "max": 10000}),
"dpi": ("INT", {"default": 300, "min": 72, "max": 600}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "pdf_to_images"
CATEGORY = "document_processing"
OUTPUT_IS_LIST = (True,)
def pdf_to_images(self, file_path, start_page, end_page, dpi):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
doc = fitz.open(full_path)
num_pages = len(doc)
start_page = max(1, min(start_page, num_pages))
end_page = max(start_page, min(end_page, num_pages))
images = []
for page_num in range(start_page - 1, end_page):
page = doc.load_page(page_num)
pix = page.get_pixmap(matrix=fitz.Matrix(dpi/72, dpi/72))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
img_np = np.array(img).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_np)[None,]
images.append(img_tensor)
doc.close()
return (images,)
@classmethod
def IS_CHANGED(cls, file_path, start_page, end_page, dpi):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
return full_path
@classmethod
def VALIDATE_INPUTS(cls, file_path, start_page, end_page, dpi):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
return os.path.isfile(full_path)
class PDFPageSplitterNode:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.lower().endswith(".pdf")]
return {
"required": {
"file_path": (sorted(files),),
"page_numbers": ("STRING", {"default": "1,2,3"}),
"dpi": ("INT", {"default": 300, "min": 72, "max": 600}),
}
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("selected_pages",)
FUNCTION = "pdf_to_selected_images"
CATEGORY = "document_processing"
OUTPUT_NODE = True
OUTPUT_IS_LIST = (True,)
def pdf_to_selected_images(self, file_path, page_numbers, dpi):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
doc = fitz.open(full_path)
num_pages = len(doc)
# Parse page numbers from input string
try:
selected_pages = [int(p.strip()) for p in page_numbers.split(',') if p.strip()]
selected_pages = [p for p in selected_pages if 1 <= p <= num_pages]
except ValueError:
raise ValueError("Invalid page numbers. Please provide comma-separated integers.")
images = []
for page_num in selected_pages:
page = doc.load_page(page_num - 1) # PDF pages are 0-indexed
pix = page.get_pixmap(matrix=fitz.Matrix(dpi/72, dpi/72))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
img_np = np.array(img).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_np)[None,]
images.append(img_tensor)
doc.close()
return (images,)
@classmethod
def IS_CHANGED(cls, file_path, page_numbers, dpi):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
return full_path
@classmethod
def VALIDATE_INPUTS(cls, file_path, page_numbers, dpi):
full_path = folder_paths.get_annotated_filepath(strip_path(file_path))
if not os.path.isfile(full_path):
return False
try:
[int(p.strip()) for p in page_numbers.split(',') if p.strip()]
except ValueError:
return False
return True
class ImageSelectorNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"indexes": ("STRING", {"default": "0"}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "select_images"
CATEGORY = "image_processing"
OUTPUT_NODE = True
OUTPUT_IS_LIST = (True,)
def select_images(self, images, indexes):
try:
index_list = [int(idx.strip()) for idx in indexes.split(',')]
except ValueError:
raise ValueError("Invalid indexes. Please provide comma-separated integers.")
selected_images = []
for idx in index_list:
if idx < 0 or idx >= len(images):
raise ValueError(f"Index {idx} is out of range. Available images: {len(images)}")
selected_images.append(images[idx])
return (selected_images,)
@classmethod
def IS_CHANGED(cls, images, indexes):
return indexes
class TextChunkerNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"multiline": True}),
"chunk_size": ("INT", {"default": 1000, "min": 1, "max": 10000}),
"chunk_method": (["words", "characters"],),
"respect_word_boundaries": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("text_chunks",)
FUNCTION = "chunk_text"
CATEGORY = "document_processing"
OUTPUT_NODE = True
OUTPUT_IS_LIST = (True,)
def chunk_text(self, text, chunk_size, chunk_method, respect_word_boundaries):
if not text:
return (["No text provided"],)
chunks = []
if chunk_method == "words":
words = text.split()
current_chunk = []
word_count = 0
for word in words:
current_chunk.append(word)
word_count += 1
if word_count >= chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = []
word_count = 0
if current_chunk:
chunks.append(" ".join(current_chunk))
else: # characters
if respect_word_boundaries:
words = text.split()
current_chunk = []
char_count = 0
for word in words:
if char_count + len(word) > chunk_size and current_chunk:
chunks.append(" ".join(current_chunk))
current_chunk = []
char_count = 0
current_chunk.append(word)
char_count += len(word) + 1 # +1 for space
if current_chunk:
chunks.append(" ".join(current_chunk))
else:
chunks = [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
return (chunks,)
class ChunkRouterNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"chunks": ("STRING", {"forceInput": True}),
"indices": ("INT", {"forceInput": True}),
"selected_index": ("INT", {"default": 0, "min": 0, "max": 1000}),
}
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("selected_chunk",)
FUNCTION = "route_chunk"
CATEGORY = "document_processing"
def route_chunk(self, chunks, indices, selected_index):
if selected_index < 0 or selected_index >= len(chunks):
raise ValueError(f"Selected index {selected_index} is out of range. Available chunks: {len(chunks)}")
return (chunks[selected_index],)
# Update NODE_CLASS_MAPPINGS and NODE_DISPLAY_NAME_MAPPINGS
NODE_CLASS_MAPPINGS = {
"DocumentLoader": DocumentLoaderNode,
"PDFToImage": PDFToImageNode,
"PDFPageSplitter": PDFPageSplitterNode,
"ImageSelector": ImageSelectorNode,
"TextChunker": TextChunkerNode,
"ChunkRouter": ChunkRouterNode
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DocumentLoader": "Document Loader",
"PDFToImage": "PDF to Image (Multi-Page)",
"PDFPageSplitter": "PDF Page Splitter",
"ImageSelector": "Image Selector",
"TextChunker": "Text Chunker",
"ChunkRouter": "Chunk Router"
}