-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_at.py
314 lines (276 loc) · 13.6 KB
/
train_at.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#!/usr/bin/env python
# encoding: utf-8
"""
@author: yzr
@file: train_at.py
@time: 2020/12/1 14:52
"""
import torch
import torch.nn as nn
import inspect
from utilities.metrics import audio_tagging_results
from utilities.Logger import create_logger, set_logger
from data_utils.SedData import SedData
from utilities.FrameEncoder import ManyHotEncoder
from utilities.FrameTransforms import get_transforms
from torch.nn.parallel import DistributedDataParallel
from data_utils.DataLoad import DataLoadDf, data_prefetcher, ConcatDataset
from utilities.Scaler import Scaler
from utilities.distribute import is_main_process, init_distributed_mode
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler, BatchSampler
from audio_tag.backbone import build_backbone
from utilities.utils import to_cuda_if_available, SaveBest
import datetime
import pandas as pd
import argparse
import shutil
import config as cfg
from pprint import pprint
import os
import warnings
from tqdm import tqdm
def get_dfs(desed_dataset, dataname):
if "urban" in dataname:
train_df = desed_dataset.initialize_and_get_df(cfg.urban_train_tsv)
valid_df = desed_dataset.initialize_and_get_df(cfg.urban_valid_tsv)
eval_df = desed_dataset.initialize_and_get_df(cfg.urban_eval_tsv)
return {"train": train_df,
"val": valid_df,
"test": eval_df}
else:
synthetic_df = desed_dataset.initialize_and_get_df(cfg.synthetic)
validation_df = desed_dataset.initialize_and_get_df(cfg.validation, audio_dir=cfg.audio_validation_dir)
weak_df = desed_dataset.initialize_and_get_df(cfg.weak)
eval_df = desed_dataset.initialize_and_get_df(cfg.eval_desed)
return {"weak": weak_df,
"synthetic": synthetic_df,
"val": validation_df,
"test": eval_df}
def train(model, train_loader, optim, c_epoch, grad_step, max_norm=0.1):
loss_func = nn.BCELoss()
#prefetcher = data_prefetcher(train_loader)
#input, targets = prefetcher.next()
i = -1
#while input is not None:
for input, targets in tqdm(train_loader):
input = to_cuda_if_available(input)
targets = to_cuda_if_available(targets)
output = model(input)
loss = loss_func(output, targets)
loss.backward()
if i % grad_step == 0:
if max_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optim.step()
optim.zero_grad()
#input, targets = prefetcher.next()
print("Epoch:{} Loss:{} lr:{}".format(c_epoch, loss.item(), optim.param_groups[0]["lr"]))
def evaluate(model, data_loader, decoder):
logger.info("validation")
loss_func = nn.BCELoss()
audio_tag_dfs = pd.DataFrame()
#prefetcher = data_prefetcher(data_loader, return_indexes=True)
#(input, targets), indexes = prefetcher.next()
i = -1
#while input is not None:
for (input, targets), indexes in tqdm(data_loader):
input = to_cuda_if_available(input)
targets = to_cuda_if_available(targets)
i += 1
indexes = indexes.numpy()
with torch.no_grad():
output = model(input)
loss = loss_func(output, targets)
audio_tags = output
audio_tags = (audio_tags > 0.5).long()
for j, audio_tag in enumerate(audio_tags):
audio_tag_res = decoder(audio_tag)
audio_tag_res = pd.DataFrame(audio_tag_res, columns=["event_label"])
audio_tag_res["filename"] = data_loader.dataset.filenames.iloc[indexes[j]]
audio_tag_res["onset"] = 0
audio_tag_res["offset"] = 0
audio_tag_dfs = audio_tag_dfs.append(audio_tag_res)
# (input, targets), indexes = prefetcher.next()
if "event_labels" in data_loader.dataset.df.columns:
reformat_df = pd.DataFrame()
filenames = data_loader.dataset.filenames
for file in filenames:
labels = audio_tag_dfs[audio_tag_dfs['filename']==file].event_label.drop_duplicates().to_list()
labels = ",".join(labels)
df = pd.DataFrame([[file, labels]], columns=['filename', 'event_labels'])
reformat_df = reformat_df.append(df)
return reformat_df
else:
return audio_tag_dfs
if __name__ == "__main__":
torch.manual_seed(2020)
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description="")
# model param
parser.add_argument("--pooling", choices=["max", "avg"], default="avg")
parser.add_argument("--pretrained", action="store_false", default=True)
###
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_false', default=True,
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
# train param
parser.add_argument("--nepochs", type=int, default=100)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--grad_steps", type=int, default=1)
parser.add_argument("--lr", type=float, default=0.0001)
parser.add_argument("--lr_drop", type=int, default=20)
parser.add_argument("--gpu", type=str, default='-1')
parser.add_argument("--back_up", action="store_true", default=False)
parser.add_argument("--fix_backbone", action="store_true", default=False)
parser.add_argument('--resume', default='backbone_resnet50_max_pretrained', help='resume training from specific model')
# data param
parser.add_argument('--dataname', default='dcase', choices=['urbansed', 'dcase'])
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--local_rank',default=0, type=int)
f_args = parser.parse_args()
init_distributed_mode(f_args)
os.environ["CUDA_VISIBLE_DEVICES"] = str(f_args.gpu)
store_dir = os.path.join(cfg.dir_root, f_args.dataname)
code_dir = os.path.join(store_dir, "code")
model_dir = os.path.join(store_dir, "model")
os.makedirs(model_dir, exist_ok=True)
model_name = f"backbone_{f_args.backbone}_{f_args.pooling}"
if f_args.pretrained:
model_name += '_pretrained'
model_path = os.path.join(model_dir, model_name)
set_logger(model_name)
logger = create_logger(__name__ + "/" + inspect.currentframe().f_code.co_name, terminal_level=cfg.terminal_level)
logger.info("Audio_Tag_Module")
logger.info(f"starting time :{datetime.datetime.now()}")
pprint(vars(f_args))
################
# code back-up
################
current_time = datetime.datetime.now().strftime('%F_%H%M')
if f_args.back_up:
# code file path
cur_code_dir = os.path.join(code_dir, f'{current_time}_{model_name}')
if os.path.exists(cur_code_dir):
shutil.rmtree(cur_code_dir)
os.makedirs(cur_code_dir)
this_dir = os.path.dirname(os.path.abspath(__file__))
for filename in os.listdir(this_dir):
if filename in ['data', 'exp', 'log']:
continue
old_path = os.path.join(this_dir, filename)
new_path = os.path.join(cur_code_dir, filename)
if os.path.isdir(old_path):
shutil.copytree(old_path, new_path)
else:
shutil.copyfile(old_path, new_path)
# model
model = build_backbone(f_args)
model = to_cuda_if_available(model)
if torch.cuda.device_count() > 1:
model = DistributedDataParallel(model, device_ids=[f_args.gpu])#f_args.gpu
logger.info(model)
param_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info("number of parameters in the model: {}".format(param_num))
# data preparation
dataset = SedData(f_args.dataname, recompute_features=False, compute_log=False)
dfs = get_dfs(dataset, f_args.dataname)
if "urban" in f_args.dataname:
encoder = ManyHotEncoder(cfg.urban_classes, n_frames=cfg.umax_frames)
transformer = get_transforms(cfg.umax_frames, add_axis=0)
else:
encoder = ManyHotEncoder(cfg.dcase_classes, n_frames=cfg.max_frames)
transformer = get_transforms(cfg.max_frames, add_axis=0)
weak_data = DataLoadDf(dfs["weak"], encoder.encode_weak, transform=transformer)
syn_data = DataLoadDf(dfs["synthetic"], encoder.encode_weak, transform=transformer)
train_data = ConcatDataset([weak_data, syn_data])
scaler = Scaler()
scaler.calculate_scaler(train_data)
transformer = get_transforms(cfg.umax_frames if "urbansed" in f_args.dataname else cfg.max_frames, scaler=scaler, add_axis=0)
weak_data = DataLoadDf(dfs["weak"], encoder.encode_weak, transform=transformer, in_memory=cfg.in_memory)
syn_data = DataLoadDf(dfs["synthetic"], encoder.encode_weak, transform=transformer, in_memory=cfg.in_memory)
val_data = DataLoadDf(dfs["val"], encoder.encode_weak, transform=transformer, return_indexes=True)
test_data = DataLoadDf(dfs["test"], encoder.encode_weak, transform=transformer, return_indexes=True)
weak_and_syn_data = ConcatDataset([weak_data, syn_data])
if torch.cuda.device_count() > 1:
weak_and_syn_data_sampler = DistributedSampler(weak_and_syn_data)
val_data_sampler = DistributedSampler(val_data, shuffle = False)
test_data_sampler = DistributedSampler(test_data, shuffle = False)
train_loader = DataLoader(weak_and_syn_data, batch_size = f_args.batch_size, shuffle=False, sampler = weak_and_syn_data_sampler, pin_memory=True)
val_loader = DataLoader(val_data, batch_size = f_args.batch_size, shuffle = False, drop_last=False, pin_memory=True)
test_loader = DataLoader(test_data, batch_size = f_args.batch_size, shuffle = False, drop_last=False, pin_memory=True)
else:
train_loader = DataLoader(weak_and_syn_data, batch_size=f_args.batch_size, shuffle=True, pin_memory=True)
val_loader = DataLoader(val_data, batch_size = f_args.batch_size, shuffle = False, drop_last=False)
test_loader = DataLoader(test_data, batch_size = f_args.batch_size, shuffle = False, drop_last=False)
# val_data_sampler = RandomSampler(val_data)
# test_data_sampler = RandomSampler(test_data)
# weak_and_syn_data_sampler = BatchSampler(weak_and_syn_data_sampler, f_args.batch_size, drop_last=True)
# val_data_sampler = BatchSampler(val_data_sampler, f_args.batch_size, drop_last=True)
# test_data_sampler = BatchSampler(test_data_sampler, f_args.batch_size, drop_last=True)
validation_labels_df = dfs["val"].drop("feature_filename", axis=1)
test_labels_df = dfs["test"].drop("feature_filename", axis=1)
optim = torch.optim.Adam(model.parameters(), lr=f_args.lr, betas=(0.9, 0.999), eps=1e-8, weight_decay=0,
amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, f_args.lr_drop)
best_saver = SaveBest("sup")
# train
state = {"model": model.state_dict(), "epoch": 0}
start_epoch = 0
if f_args.resume:
model_fname = os.path.join(model_dir, f_args.resume)
if torch.cuda.is_available():
state = torch.load(model_fname)
else:
state = torch.load(model_fname, map_location=torch.device('cpu'))
load_dict = state['model']
model.module.load_state_dict(load_dict)
start_epoch = state['epoch']
logger.info('Resume training form epoch {}'.format(state['epoch']))
for epoch in range(f_args.nepochs):
model.train()
if torch.cuda.device_count() > 1:
weak_and_syn_data_sampler.set_epoch(epoch)
train(model, train_loader, optim, epoch, f_args.grad_steps)
lr_scheduler.step()
model = model.eval()
audio_tag_df = evaluate(model, val_loader, encoder.decode_weak)
clip_metric = audio_tagging_results(validation_labels_df, audio_tag_df)
clip_macro_f1 = clip_metric.loc['avg', 'f']
print("AT Class-wise clip metrics")
print("=" * 50)
print(clip_metric)
# print("clip_macro_metrics:" + f'{clip_metric.values.mean():.3f}')
if is_main_process():
if torch.cuda.device_count() > 1:
state['model'] = model.module.state_dict()
else:
state['model'] = model.state_dict()
#state["model"] = model.state_dict()
state["epoch"] = epoch
# save best model
if best_saver.apply(clip_macro_f1):
torch.save(state, model_path)
state = torch.load(model_path, map_location=torch.device("cpu") if not torch.cuda.is_available() else torch.device(f_args.gpu))
if torch.cuda.device_count() > 1:
model.module.load_state_dict(state['model'])
else:
model.load_state_dict(state['model'])
logger.info(f"testing model of epoch {state['epoch']} at {model_path}")
model.eval()
audio_tag_df = evaluate(model, val_loader, encoder.decode_weak)
clip_metric = audio_tagging_results(validation_labels_df, audio_tag_df)
clip_macro_f1 = clip_metric.loc['avg', 'f']
print("AT Class-wise clip metrics on validation set")
print("=" * 50)
print(clip_metric)
audio_tag_df = evaluate(model, test_loader, encoder.decode_weak)
clip_metric = audio_tagging_results(test_labels_df, audio_tag_df)
clip_macro_f1 = clip_metric.loc['avg', 'f']
print("AT Class-wise clip metrics on test set")
print("=" * 50)
print(clip_metric)