diff --git a/.buildinfo b/.buildinfo index 926c8c9789..fddc69866e 100644 --- a/.buildinfo +++ b/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: ac9e52e0f6ce67401b12e91af06590f6 +config: b5d0ff58eedd87b93894b95d734e1b60 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/_downloads/5fdddbed2260616231dbf7b0d94bb665/train.txt b/_downloads/5fdddbed2260616231dbf7b0d94bb665/train.txt new file mode 100644 index 0000000000..72f40e298e --- /dev/null +++ b/_downloads/5fdddbed2260616231dbf7b0d94bb665/train.txt @@ -0,0 +1,224 @@ +2024-05-17 16:41:34 (INFO): Project root: /home/runner/work/fairchem/fairchem/src/fairchem +2024-05-17 16:41:35 (WARNING): Detected old config, converting to new format. Consider updating to avoid potential incompatibilities. +2024-05-17 16:41:35 (INFO): amp: true +cmd: + checkpoint_dir: fine-tuning/checkpoints/2024-05-17-16-40-32-ft-oxides + commit: 59cf718 + identifier: ft-oxides + logs_dir: fine-tuning/logs/tensorboard/2024-05-17-16-40-32-ft-oxides + print_every: 10 + results_dir: fine-tuning/results/2024-05-17-16-40-32-ft-oxides + seed: 0 + timestamp_id: 2024-05-17-16-40-32-ft-oxides + version: 0.1.dev1+g59cf718 +dataset: + a2g_args: + r_energy: true + r_forces: true + format: ase_db + key_mapping: + force: forces + y: energy + src: train.db +eval_metrics: + metrics: + energy: + - mae + forces: + - forcesx_mae + - forcesy_mae + - forcesz_mae + - mae + - cosine_similarity + - magnitude_error + misc: + - energy_forces_within_threshold + primary_metric: forces_mae +gpus: 0 +logger: tensorboard +loss_fns: +- energy: + coefficient: 1 + fn: mae +- forces: + coefficient: 1 + fn: l2mae +model: gemnet_oc +model_attributes: + activation: silu + atom_edge_interaction: true + atom_interaction: true + cbf: + name: spherical_harmonics + cutoff: 12.0 + cutoff_aeaint: 12.0 + cutoff_aint: 12.0 + cutoff_qint: 12.0 + direct_forces: true + edge_atom_interaction: true + emb_size_aint_in: 64 + emb_size_aint_out: 64 + emb_size_atom: 256 + emb_size_cbf: 16 + emb_size_edge: 512 + emb_size_quad_in: 32 + emb_size_quad_out: 32 + emb_size_rbf: 16 + emb_size_sbf: 32 + emb_size_trip_in: 64 + emb_size_trip_out: 64 + envelope: + exponent: 5 + name: polynomial + extensive: true + forces_coupled: false + max_neighbors: 30 + max_neighbors_aeaint: 20 + max_neighbors_aint: 1000 + max_neighbors_qint: 8 + num_after_skip: 2 + num_atom: 3 + num_atom_emb_layers: 2 + num_before_skip: 2 + num_blocks: 4 + num_concat: 1 + num_global_out_layers: 2 + num_output_afteratom: 3 + num_radial: 128 + num_spherical: 7 + otf_graph: true + output_init: HeOrthogonal + qint_tags: + - 1 + - 2 + quad_interaction: true + rbf: + name: gaussian + regress_forces: true + sbf: + name: legendre_outer + symmetric_edge_symmetrization: false +noddp: false +optim: + batch_size: 4 + clip_grad_norm: 10 + ema_decay: 0.999 + energy_coefficient: 1 + eval_batch_size: 16 + eval_every: 10 + factor: 0.8 + force_coefficient: 1 + load_balancing: atoms + loss_energy: mae + lr_initial: 0.0005 + max_epochs: 1 + mode: min + num_workers: 2 + optimizer: AdamW + optimizer_params: + amsgrad: true + patience: 3 + scheduler: ReduceLROnPlateau + weight_decay: 0 +outputs: + energy: + level: system + forces: + eval_on_free_atoms: true + level: atom + train_on_free_atoms: false +slurm: {} +task: + dataset: ase_db +test_dataset: + a2g_args: + r_energy: false + r_forces: false + src: test.db +trainer: ocp +val_dataset: + a2g_args: + r_energy: true + r_forces: true + src: val.db + +2024-05-17 16:41:35 (INFO): Loading dataset: ase_db +2024-05-17 16:41:35 (INFO): rank: 0: Sampler created... +2024-05-17 16:41:35 (INFO): Batch balancing is disabled for single GPU training. +2024-05-17 16:41:35 (INFO): rank: 0: Sampler created... +2024-05-17 16:41:35 (INFO): Batch balancing is disabled for single GPU training. +2024-05-17 16:41:36 (INFO): rank: 0: Sampler created... +2024-05-17 16:41:36 (INFO): Batch balancing is disabled for single GPU training. +2024-05-17 16:41:36 (INFO): Loading model: gemnet_oc +2024-05-17 16:41:36 (WARNING): Unrecognized arguments: ['symmetric_edge_symmetrization'] +2024-05-17 16:41:38 (INFO): Loaded GemNetOC with 38864438 parameters. +2024-05-17 16:41:38 (WARNING): Model gradient logging to tensorboard not yet supported. +2024-05-17 16:41:38 (WARNING): Using `weight_decay` from `optim` instead of `optim.optimizer_params`.Please update your config to use `optim.optimizer_params.weight_decay`.`optim.weight_decay` will soon be deprecated. +2024-05-17 16:41:38 (INFO): Loading checkpoint from: /tmp/ocp_checkpoints/gnoc_oc22_oc20_all_s2ef.pt +2024-05-17 16:41:38 (INFO): Overwriting scaling factors with those loaded from checkpoint. If you're generating predictions with a pretrained checkpoint, this is the correct behavior. To disable this, delete `scale_dict` from the checkpoint. +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +2024-05-17 16:42:01 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 6.77e+00, forcesx_mae: 4.11e-02, forcesy_mae: 3.63e-02, forcesz_mae: 5.26e-02, forces_mae: 4.33e-02, forces_cosine_similarity: 8.24e-02, forces_magnitude_error: 7.42e-02, loss: 6.86e+00, lr: 5.00e-04, epoch: 1.69e-01, step: 1.00e+01 +2024-05-17 16:42:02 (INFO): Evaluating on val. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:04<00:04, 4.65s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.56s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.77s/it] +2024-05-17 16:42:10 (INFO): energy_forces_within_threshold: 0.0000, energy_mae: 8.7332, forcesx_mae: 0.0231, forcesy_mae: 0.0188, forcesz_mae: 0.0198, forces_mae: 0.0206, forces_cosine_similarity: -0.0317, forces_magnitude_error: 0.0290, loss: 8.6590, epoch: 0.1695 +2024-05-17 16:42:10 (INFO): Predicting on test. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:02<00:02, 2.92s/it] device 0: 100%|██████████| 2/2 [00:05<00:00, 2.77s/it] device 0: 100%|██████████| 2/2 [00:05<00:00, 2.85s/it] +2024-05-17 16:42:16 (INFO): Writing results to fine-tuning/results/2024-05-17-16-40-32-ft-oxides/ocp_predictions.npz +2024-05-17 16:42:41 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.07e+01, forcesx_mae: 2.63e-02, forcesy_mae: 1.76e-02, forcesz_mae: 1.90e-02, forces_mae: 2.10e-02, forces_cosine_similarity: -3.68e-02, forces_magnitude_error: 2.26e-02, loss: 1.07e+01, lr: 5.00e-04, epoch: 3.39e-01, step: 2.00e+01 +2024-05-17 16:42:43 (INFO): Evaluating on val. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:04<00:04, 4.64s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.62s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.86s/it] +2024-05-17 16:42:50 (INFO): energy_forces_within_threshold: 0.0000, energy_mae: 2.6799, forcesx_mae: 0.0235, forcesy_mae: 0.0180, forcesz_mae: 0.0129, forces_mae: 0.0181, forces_cosine_similarity: 0.0670, forces_magnitude_error: 0.0215, loss: 2.7081, epoch: 0.3390 +2024-05-17 16:42:51 (INFO): Predicting on test. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:03<00:03, 3.12s/it] device 0: 100%|██████████| 2/2 [00:05<00:00, 2.89s/it] device 0: 100%|██████████| 2/2 [00:05<00:00, 3.00s/it] +2024-05-17 16:42:57 (INFO): Writing results to fine-tuning/results/2024-05-17-16-40-32-ft-oxides/ocp_predictions.npz +2024-05-17 16:43:16 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 4.86e+00, forcesx_mae: 1.82e-02, forcesy_mae: 1.51e-02, forcesz_mae: 2.07e-02, forces_mae: 1.80e-02, forces_cosine_similarity: -1.16e-02, forces_magnitude_error: 2.31e-02, loss: 4.90e+00, lr: 5.00e-04, epoch: 5.08e-01, step: 3.00e+01 +2024-05-17 16:43:18 (INFO): Evaluating on val. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:04<00:04, 4.56s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.51s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.76s/it] +2024-05-17 16:43:26 (INFO): energy_forces_within_threshold: 0.0000, energy_mae: 4.2742, forcesx_mae: 0.0269, forcesy_mae: 0.0289, forcesz_mae: 0.0326, forces_mae: 0.0295, forces_cosine_similarity: -0.0218, forces_magnitude_error: 0.0414, loss: 4.3599, epoch: 0.5085 +2024-05-17 16:43:50 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 3.84e+00, forcesx_mae: 3.08e-02, forcesy_mae: 2.47e-02, forcesz_mae: 3.38e-02, forces_mae: 2.98e-02, forces_cosine_similarity: -5.59e-02, forces_magnitude_error: 4.10e-02, loss: 3.90e+00, lr: 5.00e-04, epoch: 6.78e-01, step: 4.00e+01 +2024-05-17 16:43:52 (INFO): Evaluating on val. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:04<00:04, 4.43s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.67s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.88s/it] +2024-05-17 16:44:00 (INFO): energy_forces_within_threshold: 0.0000, energy_mae: 3.9244, forcesx_mae: 0.0152, forcesy_mae: 0.0158, forcesz_mae: 0.0139, forces_mae: 0.0149, forces_cosine_similarity: 0.1293, forces_magnitude_error: 0.0190, loss: 3.9234, epoch: 0.6780 +2024-05-17 16:44:00 (INFO): Predicting on test. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:03<00:03, 3.30s/it] device 0: 100%|██████████| 2/2 [00:06<00:00, 2.96s/it] device 0: 100%|██████████| 2/2 [00:06<00:00, 3.12s/it] +2024-05-17 16:44:07 (INFO): Writing results to fine-tuning/results/2024-05-17-16-40-32-ft-oxides/ocp_predictions.npz +2024-05-17 16:44:27 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 4.44e+00, forcesx_mae: 3.39e-02, forcesy_mae: 2.86e-02, forcesz_mae: 2.30e-02, forces_mae: 2.85e-02, forces_cosine_similarity: -9.07e-02, forces_magnitude_error: 4.03e-02, loss: 4.49e+00, lr: 5.00e-04, epoch: 8.47e-01, step: 5.00e+01 +2024-05-17 16:44:29 (INFO): Evaluating on val. + device 0: 0%| | 0/2 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 50%|█████ | 1/2 [00:04<00:04, 4.68s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.68s/it] device 0: 100%|██████████| 2/2 [00:07<00:00, 3.94s/it] +2024-05-17 16:44:37 (INFO): energy_forces_within_threshold: 0.0333, energy_mae: 3.0752, forcesx_mae: 0.0289, forcesy_mae: 0.0355, forcesz_mae: 0.0381, forces_mae: 0.0342, forces_cosine_similarity: -0.0651, forces_magnitude_error: 0.0525, loss: 3.1505, epoch: 0.8475 +2024-05-17 16:44:56 (INFO): Total time taken: 197.73134779930115 diff --git a/_downloads/819e10305ddd6839cd7da05935b17060/mass-inference.txt b/_downloads/819e10305ddd6839cd7da05935b17060/mass-inference.txt new file mode 100644 index 0000000000..2c2d2adf2c --- /dev/null +++ b/_downloads/819e10305ddd6839cd7da05935b17060/mass-inference.txt @@ -0,0 +1,143 @@ +2024-05-17 16:46:54 (INFO): Project root: /home/runner/work/fairchem/fairchem/src/fairchem +2024-05-17 16:46:55 (WARNING): Detected old config, converting to new format. Consider updating to avoid potential incompatibilities. +2024-05-17 16:46:55 (INFO): amp: true +cmd: + checkpoint_dir: ./checkpoints/2024-05-17-16-46-56 + commit: 59cf718 + identifier: '' + logs_dir: ./logs/tensorboard/2024-05-17-16-46-56 + print_every: 10 + results_dir: ./results/2024-05-17-16-46-56 + seed: 0 + timestamp_id: 2024-05-17-16-46-56 + version: 0.1.dev1+g59cf718 +dataset: + a2g_args: + r_energy: false + r_forces: false + format: ase_db + key_mapping: + force: forces + y: energy + select_args: + selection: natoms>5,xc=PBE + src: data.db +eval_metrics: + metrics: + energy: + - mae + forces: + - forcesx_mae + - forcesy_mae + - forcesz_mae + - mae + - cosine_similarity + - magnitude_error + misc: + - energy_forces_within_threshold + primary_metric: forces_mae +gpus: 0 +logger: tensorboard +loss_fns: +- energy: + coefficient: 1 + fn: mae +- forces: + coefficient: 1 + fn: l2mae +model: gemnet_t +model_attributes: + activation: silu + cbf: + name: spherical_harmonics + cutoff: 6.0 + direct_forces: true + emb_size_atom: 512 + emb_size_bil_trip: 64 + emb_size_cbf: 16 + emb_size_edge: 512 + emb_size_rbf: 16 + emb_size_trip: 64 + envelope: + exponent: 5 + name: polynomial + extensive: true + max_neighbors: 50 + num_after_skip: 2 + num_atom: 3 + num_before_skip: 1 + num_blocks: 3 + num_concat: 1 + num_radial: 128 + num_spherical: 7 + otf_graph: true + output_init: HeOrthogonal + rbf: + name: gaussian + regress_forces: true +noddp: false +optim: + batch_size: 16 + clip_grad_norm: 10 + ema_decay: 0.999 + energy_coefficient: 1 + eval_batch_size: 16 + eval_every: 5000 + force_coefficient: 1 + loss_energy: mae + loss_force: atomwisel2 + lr_gamma: 0.8 + lr_initial: 0.0005 + lr_milestones: + - 64000 + - 96000 + - 128000 + - 160000 + - 192000 + max_epochs: 80 + num_workers: 2 + optimizer: AdamW + optimizer_params: + amsgrad: true + warmup_steps: -1 +outputs: + energy: + level: system + forces: + eval_on_free_atoms: true + level: atom + train_on_free_atoms: false +slurm: {} +task: + dataset: ase_db + prediction_dtype: float32 +test_dataset: + a2g_args: + r_energy: false + r_forces: false + select_args: + selection: natoms>5,xc=PBE + src: data.db +trainer: ocp +val_dataset: null + +2024-05-17 16:46:55 (INFO): Loading dataset: ase_db +2024-05-17 16:46:56 (INFO): rank: 0: Sampler created... +2024-05-17 16:46:56 (INFO): Batch balancing is disabled for single GPU training. +2024-05-17 16:46:56 (INFO): rank: 0: Sampler created... +2024-05-17 16:46:56 (INFO): Batch balancing is disabled for single GPU training. +2024-05-17 16:46:56 (INFO): Loading model: gemnet_t +2024-05-17 16:46:57 (INFO): Loaded GemNetT with 31671825 parameters. +2024-05-17 16:46:57 (WARNING): Model gradient logging to tensorboard not yet supported. +2024-05-17 16:46:58 (INFO): Loading checkpoint from: /tmp/ocp_checkpoints/gndt_oc22_all_s2ef.pt +2024-05-17 16:46:58 (INFO): Overwriting scaling factors with those loaded from checkpoint. If you're generating predictions with a pretrained checkpoint, this is the correct behavior. To disable this, delete `scale_dict` from the checkpoint. +2024-05-17 16:46:58 (WARNING): Scale factor comment not found in model +2024-05-17 16:46:58 (INFO): Predicting on test. + device 0: 0%| | 0/3 [00:00, ?it/s]/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch_geometric/data/collate.py:145: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() + storage = elem.storage()._new_shared(numel) + device 0: 33%|███████████▋ | 1/3 [00:04<00:09, 4.89s/it] device 0: 67%|███████████████████████▎ | 2/3 [00:06<00:03, 3.18s/it] device 0: 100%|███████████████████████████████████| 3/3 [00:07<00:00, 2.10s/it] device 0: 100%|███████████████████████████████████| 3/3 [00:07<00:00, 2.57s/it] +2024-05-17 16:47:05 (INFO): Writing results to ./results/2024-05-17-16-46-56/ocp_predictions.npz +2024-05-17 16:47:05 (INFO): Total time taken: 7.855764865875244 +Elapsed time = 13.9 seconds diff --git a/_images/01e81f6c3f48ab7afff5b938d0c6a052f8635f048b5b7f495a17409cb544df72.png b/_images/01e81f6c3f48ab7afff5b938d0c6a052f8635f048b5b7f495a17409cb544df72.png new file mode 100644 index 0000000000..22d68d5771 Binary files /dev/null and b/_images/01e81f6c3f48ab7afff5b938d0c6a052f8635f048b5b7f495a17409cb544df72.png differ diff --git a/_images/170bc9949a589c01b9dd86594314ef1566bd2800215484dd031eacea9d34b8ed.png b/_images/170bc9949a589c01b9dd86594314ef1566bd2800215484dd031eacea9d34b8ed.png new file mode 100644 index 0000000000..796c5a5013 Binary files /dev/null and b/_images/170bc9949a589c01b9dd86594314ef1566bd2800215484dd031eacea9d34b8ed.png differ diff --git a/_images/2c4bb26d275ec9417db0b773e5825660c93f048a3876215fe85b70f8c1d94a6e.png b/_images/2c4bb26d275ec9417db0b773e5825660c93f048a3876215fe85b70f8c1d94a6e.png new file mode 100644 index 0000000000..9c12bf70a7 Binary files /dev/null and b/_images/2c4bb26d275ec9417db0b773e5825660c93f048a3876215fe85b70f8c1d94a6e.png differ diff --git a/_images/366dcb1f0d2763d7437d3b5b666ebfda153643d4b11dc71a09f6161ce695c67c.png b/_images/366dcb1f0d2763d7437d3b5b666ebfda153643d4b11dc71a09f6161ce695c67c.png new file mode 100644 index 0000000000..976b5917e2 Binary files /dev/null and b/_images/366dcb1f0d2763d7437d3b5b666ebfda153643d4b11dc71a09f6161ce695c67c.png differ diff --git a/_images/3af36046407c85efd47c685c029d67f42a28c228c33b7b8a35c33f393440382a.png b/_images/3af36046407c85efd47c685c029d67f42a28c228c33b7b8a35c33f393440382a.png new file mode 100644 index 0000000000..107c6974e7 Binary files /dev/null and b/_images/3af36046407c85efd47c685c029d67f42a28c228c33b7b8a35c33f393440382a.png differ diff --git a/_images/456ff01f27836e8b343bf8d3891273a557faf080bf9dfd1d82452e352dc0ceea.png b/_images/456ff01f27836e8b343bf8d3891273a557faf080bf9dfd1d82452e352dc0ceea.png new file mode 100644 index 0000000000..44921e10af Binary files /dev/null and b/_images/456ff01f27836e8b343bf8d3891273a557faf080bf9dfd1d82452e352dc0ceea.png differ diff --git a/_images/4bace82b10c623914f65162c41715b5dfcc194c1569698d06031d1f715ccc1e4.png b/_images/4bace82b10c623914f65162c41715b5dfcc194c1569698d06031d1f715ccc1e4.png new file mode 100644 index 0000000000..fa074fa31b Binary files /dev/null and b/_images/4bace82b10c623914f65162c41715b5dfcc194c1569698d06031d1f715ccc1e4.png differ diff --git a/_images/50c8e6d9d4ff36851865c963e5b0dbec8644e6b8165949be66d93ad908a3a94c.png b/_images/50c8e6d9d4ff36851865c963e5b0dbec8644e6b8165949be66d93ad908a3a94c.png new file mode 100644 index 0000000000..ecf54428e3 Binary files /dev/null and b/_images/50c8e6d9d4ff36851865c963e5b0dbec8644e6b8165949be66d93ad908a3a94c.png differ diff --git a/_images/61a3228be2ca87b7b54934b6abc4e125fb13549b980aec4faca1d062f40cd24e.png b/_images/61a3228be2ca87b7b54934b6abc4e125fb13549b980aec4faca1d062f40cd24e.png new file mode 100644 index 0000000000..4a81d06bb4 Binary files /dev/null and b/_images/61a3228be2ca87b7b54934b6abc4e125fb13549b980aec4faca1d062f40cd24e.png differ diff --git a/_images/643db0cf71f60bbef7025b3f50dfab282da4371e89979a0744574aaa167e16fc.png b/_images/643db0cf71f60bbef7025b3f50dfab282da4371e89979a0744574aaa167e16fc.png new file mode 100644 index 0000000000..a519c9c5a2 Binary files /dev/null and b/_images/643db0cf71f60bbef7025b3f50dfab282da4371e89979a0744574aaa167e16fc.png differ diff --git a/_images/699a8e28c0e5af6b7d542d532d2dd7a99ceda6c37e0d2fdd9d6c4cbc5eae57ef.png b/_images/699a8e28c0e5af6b7d542d532d2dd7a99ceda6c37e0d2fdd9d6c4cbc5eae57ef.png new file mode 100644 index 0000000000..277c0dd6e0 Binary files /dev/null and b/_images/699a8e28c0e5af6b7d542d532d2dd7a99ceda6c37e0d2fdd9d6c4cbc5eae57ef.png differ diff --git a/_images/6a5800b612d2be5c9576cda60c4f84e52cbeee8ab9c16e8abc25a1c42d77bf2e.png b/_images/6a5800b612d2be5c9576cda60c4f84e52cbeee8ab9c16e8abc25a1c42d77bf2e.png new file mode 100644 index 0000000000..95e8495a40 Binary files /dev/null and b/_images/6a5800b612d2be5c9576cda60c4f84e52cbeee8ab9c16e8abc25a1c42d77bf2e.png differ diff --git a/_images/7578ee45a79d2affcd21d68cf8b06181742c275c2280a7bcc84b98d41b78dc6e.png b/_images/7578ee45a79d2affcd21d68cf8b06181742c275c2280a7bcc84b98d41b78dc6e.png new file mode 100644 index 0000000000..66b414b7f1 Binary files /dev/null and b/_images/7578ee45a79d2affcd21d68cf8b06181742c275c2280a7bcc84b98d41b78dc6e.png differ diff --git a/_images/779c250f6bf7aaa03eef896ef1541e648ebf742911fe25095bde7b712d7234d4.png b/_images/779c250f6bf7aaa03eef896ef1541e648ebf742911fe25095bde7b712d7234d4.png new file mode 100644 index 0000000000..e3e80d12f6 Binary files /dev/null and b/_images/779c250f6bf7aaa03eef896ef1541e648ebf742911fe25095bde7b712d7234d4.png differ diff --git a/_images/822098d60fa7a37fab2d8bd60c4eb2550de2ea076f9e6a557642d0776192bde3.png b/_images/822098d60fa7a37fab2d8bd60c4eb2550de2ea076f9e6a557642d0776192bde3.png new file mode 100644 index 0000000000..9eaba4e9c5 Binary files /dev/null and b/_images/822098d60fa7a37fab2d8bd60c4eb2550de2ea076f9e6a557642d0776192bde3.png differ diff --git a/_images/88ead5bbd89bc50c23bfe01328aaa56af0a05a83b148ec0823e6f4c10cf0cd88.png b/_images/88ead5bbd89bc50c23bfe01328aaa56af0a05a83b148ec0823e6f4c10cf0cd88.png new file mode 100644 index 0000000000..9ae7e37b9c Binary files /dev/null and b/_images/88ead5bbd89bc50c23bfe01328aaa56af0a05a83b148ec0823e6f4c10cf0cd88.png differ diff --git a/_images/8f0c9791161c339543bda4170c3f954270bca8b6e60d88b947cc42c8e7018929.png b/_images/8f0c9791161c339543bda4170c3f954270bca8b6e60d88b947cc42c8e7018929.png new file mode 100644 index 0000000000..ba89a830c6 Binary files /dev/null and b/_images/8f0c9791161c339543bda4170c3f954270bca8b6e60d88b947cc42c8e7018929.png differ diff --git a/_images/90530c0fb25b9caa530cc02502a659b784f34bf0b8ebdceb934bee7ddc222d55.png b/_images/90530c0fb25b9caa530cc02502a659b784f34bf0b8ebdceb934bee7ddc222d55.png new file mode 100644 index 0000000000..bcc5c47000 Binary files /dev/null and b/_images/90530c0fb25b9caa530cc02502a659b784f34bf0b8ebdceb934bee7ddc222d55.png differ diff --git a/_images/91047de027f6044074d02e1daa405a2fef563d024b57288137bc0adf4344b0b9.png b/_images/91047de027f6044074d02e1daa405a2fef563d024b57288137bc0adf4344b0b9.png new file mode 100644 index 0000000000..55dbe505d0 Binary files /dev/null and b/_images/91047de027f6044074d02e1daa405a2fef563d024b57288137bc0adf4344b0b9.png differ diff --git a/_images/94b675b655200519baaacdd72a4fb6b0f7a36c57d7a4025b34de029233d8d3f8.png b/_images/94b675b655200519baaacdd72a4fb6b0f7a36c57d7a4025b34de029233d8d3f8.png new file mode 100644 index 0000000000..9eead9f4ec Binary files /dev/null and b/_images/94b675b655200519baaacdd72a4fb6b0f7a36c57d7a4025b34de029233d8d3f8.png differ diff --git a/_images/bafcd798ce6fa792883069f5f67d59f84f0614aee01a6b563e2eda73664e980d.png b/_images/bafcd798ce6fa792883069f5f67d59f84f0614aee01a6b563e2eda73664e980d.png new file mode 100644 index 0000000000..b688b4a2a2 Binary files /dev/null and b/_images/bafcd798ce6fa792883069f5f67d59f84f0614aee01a6b563e2eda73664e980d.png differ diff --git a/_images/bc678ad5f054a187ada9488eac6034ec451475c82b447ad813ae1b9b24601637.png b/_images/bc678ad5f054a187ada9488eac6034ec451475c82b447ad813ae1b9b24601637.png new file mode 100644 index 0000000000..9c8588664a Binary files /dev/null and b/_images/bc678ad5f054a187ada9488eac6034ec451475c82b447ad813ae1b9b24601637.png differ diff --git a/_images/cc229e2a633750ac5877c208b790eeda77e4e79be782b51ff8c987874d8977ae.png b/_images/cc229e2a633750ac5877c208b790eeda77e4e79be782b51ff8c987874d8977ae.png new file mode 100644 index 0000000000..b0d068b5a7 Binary files /dev/null and b/_images/cc229e2a633750ac5877c208b790eeda77e4e79be782b51ff8c987874d8977ae.png differ diff --git a/_images/d2caa281738a05cfd6c4e7574edac628bc5183711e03f77721b068ff904c66d3.png b/_images/d2caa281738a05cfd6c4e7574edac628bc5183711e03f77721b068ff904c66d3.png new file mode 100644 index 0000000000..b9d76207aa Binary files /dev/null and b/_images/d2caa281738a05cfd6c4e7574edac628bc5183711e03f77721b068ff904c66d3.png differ diff --git a/_images/dd5a6f98208aaa1c5ff0b1c91baebe0a2cd7bc24bdda4bc2cd0905198d1021e9.png b/_images/dd5a6f98208aaa1c5ff0b1c91baebe0a2cd7bc24bdda4bc2cd0905198d1021e9.png new file mode 100644 index 0000000000..a0e7f35c36 Binary files /dev/null and b/_images/dd5a6f98208aaa1c5ff0b1c91baebe0a2cd7bc24bdda4bc2cd0905198d1021e9.png differ diff --git a/_images/e407f2aba16854949ec326b5ce84fc620bea274782085e3f1bb89ccfb4f910f0.png b/_images/e407f2aba16854949ec326b5ce84fc620bea274782085e3f1bb89ccfb4f910f0.png new file mode 100644 index 0000000000..66f86d55be Binary files /dev/null and b/_images/e407f2aba16854949ec326b5ce84fc620bea274782085e3f1bb89ccfb4f910f0.png differ diff --git a/_images/eea5906a9c28d160b736caf478f8c2a9eee7eb06c0b3c513bffbf9b5489f03f1.png b/_images/eea5906a9c28d160b736caf478f8c2a9eee7eb06c0b3c513bffbf9b5489f03f1.png new file mode 100644 index 0000000000..b37849c821 Binary files /dev/null and b/_images/eea5906a9c28d160b736caf478f8c2a9eee7eb06c0b3c513bffbf9b5489f03f1.png differ diff --git a/_sources/core/install.md b/_sources/core/install.md index 8ad523f326..d949687dec 100644 --- a/_sources/core/install.md +++ b/_sources/core/install.md @@ -1,13 +1,12 @@ # Installation + +To install `fairchem-core` you will need to setup the `fairchem-core` environment (using [conda](#Conda) or [pip](#PyPi)) and then either install `fairchem-core` package [directly](#Install-fairchem-core) or install [development version](#Development-install) from our git repository. -To install `fairchem-core` you will need to setup the `fairchem-core` environment (using [conda](#Conda) or [pip](#PyPi)) -and then either install `fairchem-core` package [directly](#Install-fairchem-core) or install a [development version](#Development-install) from our git repository. - -## Environment +## Environment You can install the environment using either conda or pip -### Conda +### Conda We do not have official conda recipes (yet!); in the meantime you can use the following environment yaml files to setup on CPU or GPU. If conda is too slow for you, please consider using [mamba](https://mamba.readthedocs.io/en/latest/user_guide/mamba.html) @@ -60,8 +59,9 @@ pip install fairchem-{package-to-install} ## Development install -If you plan to make contributions you will need to fork and clone (for windows user please see next section) the repo, -set up the environment, and install fairchem-core from source in editable mode with dev dependencies, +If you plan to make contributions you will need to fork and clone (for windows user please see next section) the repo, set up the environment, and install from source. +`fairchem-core` in editable mode with dev +dependencies, ```bash git clone https://github.com/FAIR-Chem/fairchem.git cd fairchem diff --git a/_sources/index.md b/_sources/index.md index 7e279abd32..2ebb901116 100644 --- a/_sources/index.md +++ b/_sources/index.md @@ -1,5 +1,4 @@ - -
fairchem
by FAIR Chemistry fairchem
by FAIR Chemistry
-#### FAIR-Chem overview
-
`fairchem` is the [FAIR](https://ai.meta.com/research/) Chemistry's centralized repository of all its data, models, demos, and application efforts
for materials science and quantum chemistry. Collaborative projects that contribute or use the models and approaches in
this repo:
@@ -25,7 +22,7 @@ We re-organized and rebranded the repository in 2024 (previously the `fairchem`
general usability of these models beyond catalysis, including things like direct air capture.
```
-#### Datasets in `fairchem`:
+### Datasets in `fairchem`:
`fairchem` provides training and evaluation code for tasks and models that take arbitrary
chemical structures as input to predict energies / forces / positions / stresses,
and can be used as a base scaffold for research projects. For an overview of
@@ -36,7 +33,7 @@ tasks, data, and metrics, please read the documentations and respective papers:
- [OC20Dense](core/datasets/oc20dense)
- [OC20NEB](core/datasets/oc20neb)
-#### Projects and models built on `fairchem`:
+### Projects and models built on `fairchem`:
- SchNet [[`arXiv`](https://arxiv.org/abs/1706.08566)] [[`code`](https://github.com/FAIR-Chem/fairchem/blob/main/src/fairchem/core/models/schnet.py)]
- DimeNet++ [[`arXiv`](https://arxiv.org/abs/2011.14115)] [[`code`](https://github.com/FAIR-Chem/fairchem/blob/main/src/fairchem/core/models/dimenet_plus_plus.py)]
@@ -56,7 +53,7 @@ Older model implementations that are no longer supported:
- SpinConv [[`arXiv`](https://arxiv.org/abs/2106.09575)] [[`code`](https://github.com/FAIR-Chem/fairchem/blob/e7a8745eb307e8a681a1aa9d30c36e8c41e9457e/ocpmodels/models/spinconv.py)]
- ForceNet [[`arXiv`](https://arxiv.org/abs/2103.01436)] [[`code`](https://github.com/FAIR-Chem/fairchem/blob/e7a8745eb307e8a681a1aa9d30c36e8c41e9457e/ocpmodels/models/forcenet.py)]
-### Discussion
+## Discussion
For all non-codebase related questions and to keep up-to-date with the latest OCP
announcements, please join the [discussion board](https://discuss.opencatalystproject.org/).
@@ -64,7 +61,7 @@ announcements, please join the [discussion board](https://discuss.opencatalystpr
All code-related questions and issues should be posted directly on our
[issues page](https://github.com/FAIR-Chem/fairchem/issues).
-### Acknowledgements
+## Acknowledgements
- This codebase was initially forked from [CGCNN](https://github.com/txie-93/cgcnn)
by [Tian Xie](http://txie.me), but has undergone significant changes since.
@@ -73,11 +70,11 @@ by [Tian Xie](http://txie.me), but has undergone significant changes since.
- It was then developed as the OCP repo, and includes many contributions from the community and collaborators.
- Much of the documentation was developed for various papers or as part of a comprehensive tutorial for the 2023 ACS Fall Chemistry conference.
-### License
+## License
`fairchem` is released under the [MIT](https://github.com/FAIR-Chem/fairchem/blob/main/LICENSE.md) license.
-### Citing `fairchem`
+## Citing `fairchem`
If you use this codebase in your work, please consider citing:
diff --git a/_static/logo.png b/_static/logo.png
new file mode 100644
index 0000000000..ffb62c1197
Binary files /dev/null and b/_static/logo.png differ
diff --git a/autoapi/adsorbml/2023_neurips_challenge/challenge_eval/index.html b/autoapi/adsorbml/2023_neurips_challenge/challenge_eval/index.html
index 14446143cb..1abbaf8cf8 100644
--- a/autoapi/adsorbml/2023_neurips_challenge/challenge_eval/index.html
+++ b/autoapi/adsorbml/2023_neurips_challenge/challenge_eval/index.html
@@ -8,7 +8,7 @@
-