@@ -5307,7 +5307,7 @@ def reindex(
5307
5307
level : int or name
5308
5308
Broadcast across a level, matching Index values on the
5309
5309
passed MultiIndex level.
5310
- fill_value : scalar, default np.NaN
5310
+ fill_value : scalar, default np.nan
5311
5311
Value to use for missing values. Defaults to NaN, but can be any
5312
5312
"compatible" value.
5313
5313
limit : int, default None
@@ -7376,7 +7376,7 @@ def ffill(
7376
7376
2 3.0 4.0 NaN 1.0
7377
7377
3 3.0 3.0 NaN 4.0
7378
7378
7379
- >>> ser = pd.Series([1, np.NaN , 2, 3])
7379
+ >>> ser = pd.Series([1, np.nan , 2, 3])
7380
7380
>>> ser.ffill()
7381
7381
0 1.0
7382
7382
1 1.0
@@ -8375,7 +8375,7 @@ def isna(self) -> Self:
8375
8375
--------
8376
8376
Show which entries in a DataFrame are NA.
8377
8377
8378
- >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN ],
8378
+ >>> df = pd.DataFrame(dict(age=[5, 6, np.nan ],
8379
8379
... born=[pd.NaT, pd.Timestamp('1939-05-27'),
8380
8380
... pd.Timestamp('1940-04-25')],
8381
8381
... name=['Alfred', 'Batman', ''],
@@ -8394,7 +8394,7 @@ def isna(self) -> Self:
8394
8394
8395
8395
Show which entries in a Series are NA.
8396
8396
8397
- >>> ser = pd.Series([5, 6, np.NaN ])
8397
+ >>> ser = pd.Series([5, 6, np.nan ])
8398
8398
>>> ser
8399
8399
0 5.0
8400
8400
1 6.0
@@ -8442,7 +8442,7 @@ def notna(self) -> Self:
8442
8442
--------
8443
8443
Show which entries in a DataFrame are not NA.
8444
8444
8445
- >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN ],
8445
+ >>> df = pd.DataFrame(dict(age=[5, 6, np.nan ],
8446
8446
... born=[pd.NaT, pd.Timestamp('1939-05-27'),
8447
8447
... pd.Timestamp('1940-04-25')],
8448
8448
... name=['Alfred', 'Batman', ''],
@@ -8461,7 +8461,7 @@ def notna(self) -> Self:
8461
8461
8462
8462
Show which entries in a Series are not NA.
8463
8463
8464
- >>> ser = pd.Series([5, 6, np.NaN ])
8464
+ >>> ser = pd.Series([5, 6, np.nan ])
8465
8465
>>> ser
8466
8466
0 5.0
8467
8467
1 6.0
@@ -8628,7 +8628,7 @@ def clip(
8628
8628
8629
8629
Clips using specific lower threshold per column element, with missing values:
8630
8630
8631
- >>> t = pd.Series([2, -4, np.NaN , 6, 3])
8631
+ >>> t = pd.Series([2, -4, np.nan , 6, 3])
8632
8632
>>> t
8633
8633
0 2.0
8634
8634
1 -4.0
@@ -9828,7 +9828,7 @@ def align(
9828
9828
copy : bool, default True
9829
9829
Always returns new objects. If copy=False and no reindexing is
9830
9830
required then original objects are returned.
9831
- fill_value : scalar, default np.NaN
9831
+ fill_value : scalar, default np.nan
9832
9832
Value to use for missing values. Defaults to NaN, but can be any
9833
9833
"compatible" value.
9834
9834
method : {{'backfill', 'bfill', 'pad', 'ffill', None}}, default None
0 commit comments