-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpavf.py
267 lines (204 loc) · 9.64 KB
/
pavf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import numpy as np
import gym
import core
import torch.nn as nn
import torch.optim as optim
import wandb
from torch.distributions.normal import Normal
# Default hyperparameters
hyperparameter_defaults = dict(
algo='pavf',
env_name='MountainCarContinuous-v0',
neurons_policy=(),
neurons_vf=(512,512),
policy_iters=1,
vf_iters=5,
batch_size=128,
learning_rate_policy=1e-3,
learning_rate_vf=1e-3,
noise_policy=1.0, # std of distribution generating the noise for the perturbed policy
observation_normalization=True,
size_buffer=100000,
max_episodes=1000000000,
max_timesteps=100000,
run=1,
deterministic_actor=True,
ts_evaluation=1000,
update_every_ts=50,
discount_factor=0.99,
bs_policy_update=10000,
)
# Initialize wandb
wandb.init(config=hyperparameter_defaults, project="pavf_rl")
config = wandb.config
# Use GPU or CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device('cpu')
# Create env
env = gym.make(config['env_name'])
env_test = gym.make(config['env_name'])
# Create replay buffer, policy, vf
buffer = core.Buffer_td(config['size_buffer'])
statistics = core.Statistics(env.observation_space.shape)
ac = core.MLPActorCritic(config['algo'], env.observation_space, env.action_space,
hidden_sizes_actor=tuple(config['neurons_policy']), activation=nn.Tanh,
hidden_sizes_critic=tuple(config['neurons_vf']), device=device,
critic=True, deterministic_actor=config['deterministic_actor'])
print("number of policy params:", len(nn.utils.parameters_to_vector(list(ac.pi.parameters()))))
print("number of vf params:", len(nn.utils.parameters_to_vector(list(ac.v.parameters()))))
# Setup optimizer
optimize_policy = optim.Adam(ac.pi.parameters(), lr=config['learning_rate_policy'])
optimize_vf = optim.Adam(ac.v.parameters(), lr=config['learning_rate_vf'])
wandb.watch(ac.pi)
wandb.watch(ac.v)
def compute_policy_loss(parameters, states):
parameters = parameters.repeat(len(states), 1)
losses = -ac.v.forward(parameters, states, ac.pi(states))
loss = torch.mean(losses)
return loss
def compute_vf_loss(states, actions, parameters, next_states, next_actions, rewards, is_terminal):
with torch.no_grad():
next_estimate = ac.v.forward(parameters, next_states, next_actions)
current_estimate = ac.v.forward(parameters, states, actions)
loss = ((current_estimate - (rewards + config['discount_factor'] * (1 - is_terminal) * next_estimate))**2).mean()
return loss
def perturbe_policy(policy):
dist = Normal(torch.zeros(len(torch.nn.utils.parameters_to_vector(policy.parameters()))), scale=1)
delta = dist.sample().to(device, non_blocking=True).detach()
# Perturbe policy parameters
params = torch.nn.utils.parameters_to_vector(policy.parameters()).detach()
perturbed_params = params + config['noise_policy'] * delta
# Copy perturbed parameters into a new policy
perturbed_policy = core.MLPActorCritic(config['algo'], env.observation_space, env.action_space,
hidden_sizes_actor=tuple(config['neurons_policy']), activation=nn.Tanh,
hidden_sizes_critic=tuple(config['neurons_vf']), device=device,
critic=False, deterministic_actor=config['deterministic_actor'])
torch.nn.utils.vector_to_parameters(perturbed_params, perturbed_policy.parameters())
return perturbed_policy
def update():
for i in range(config['vf_iters']):
# Sample batch
sampled_hist = buffer.sample_replay_td(config['batch_size'])
sampled_programs, sampled_transitions = zip(*sampled_hist)
sampled_states, sampled_actions, sampled_rewards, sampled_next_states, sampled_next_actions, sampled_terminal_condition = zip(*sampled_transitions)
sampled_programs = torch.stack(sampled_programs).to(device, non_blocking=True).detach()
sampled_states = torch.stack(sampled_states).to(device, non_blocking=True).detach()
sampled_actions = torch.stack(sampled_actions).to(device, non_blocking=True).detach()
sampled_next_states = torch.stack(sampled_next_states).to(device, non_blocking=True).detach()
sampled_next_actions = torch.stack(sampled_next_actions).to(device, non_blocking=True).detach()
sampled_rewards = torch.stack(sampled_rewards).to(device, non_blocking=True).detach()
sampled_terminal_condition = torch.stack(sampled_terminal_condition).to(device, non_blocking=True).detach()
optimize_vf.zero_grad()
loss_vf = compute_vf_loss(sampled_states, sampled_actions, sampled_programs, sampled_next_states, sampled_next_actions, sampled_rewards, sampled_terminal_condition)
loss_vf.backward()
optimize_vf.step()
# Freeze PAVF
for p in ac.v.parameters():
p.requires_grad = False
sampled_hist_up = buffer.sample_replay_td(config['bs_policy_update'])
_, sampled_transitions_up = zip(*sampled_hist_up)
sampled_states_up, _, _, _, _, _ = zip(*sampled_transitions_up)
sampled_states_up = torch.stack(sampled_states_up).to(device, non_blocking=True).detach()
for i in range(config['policy_iters']):
params = nn.utils.parameters_to_vector(list(ac.pi.parameters())).to(device, non_blocking=True)
optimize_policy.zero_grad()
loss_policy = compute_policy_loss(params, sampled_states_up)
loss_policy.backward()
optimize_policy.step()
# Unfreeze PAVF
for p in ac.v.parameters():
p.requires_grad = True
return
def evaluate(ac):
rew_evals = []
with torch.no_grad():
for _ in range(10):
# Simulate a trajectory and compute the total reward
done = False
obs = env_test.reset()
rew_eval = 0
while not done:
obs = torch.as_tensor(obs, dtype=torch.float32)
if config['observation_normalization'] and statistics.episode > 0:
obs = statistics.normalize(obs)
with torch.no_grad():
action = ac.act(obs.to(device, non_blocking=True).detach())
obs_new, r, done, _ = env_test.step(action)
# Remove survival bonus
if config['env_name'] == 'Hopper-v3':
rew_eval += r - 1
else:
rew_eval += r
obs = obs_new
rew_evals.append(rew_eval)
statistics.rew_eval = np.mean(rew_evals)
statistics.push_rew(np.mean(rew_evals))
# Log results
wandb.log({'rew_eval': statistics.rew_eval,
'average_reward': np.mean(statistics.rewards),
'average_last_rewards': np.mean(statistics.last_rewards),
})
print("Ts", statistics.total_ts, "Ep", statistics.episode, "rew_eval", statistics.rew_eval)
return
def train():
obs = env.reset()
obs = torch.as_tensor(obs, dtype=torch.float32)
if config['observation_normalization']:
statistics.push_obs(obs)
obs = statistics.normalize(obs)
rew = 0
# Perturbe policy
perturbed_policy = perturbe_policy(ac.pi)
perturbed_params = nn.utils.parameters_to_vector(list(perturbed_policy.parameters())).to(device, non_blocking=True).detach()
while statistics.total_ts < config['max_timesteps'] and statistics.episode < config['max_episodes']:
#Collect data
with torch.no_grad():
action = perturbed_policy.act(torch.as_tensor(obs, dtype=torch.float32).to(device, non_blocking=True).detach())
obs_new, r, done, _ = env.step(action)
# Remove survival bonus
if config['env_name'] == 'Hopper-v3':
rew += r - 1
else:
rew += r
statistics.total_ts += 1
statistics.len_episode += 1
obs_new = torch.as_tensor(obs_new, dtype=torch.float32)
if config['observation_normalization']:
statistics.push_obs(obs_new)
obs_new = statistics.normalize(obs_new)
done_bool = float(done) if statistics.len_episode < env._max_episode_steps else 0
with torch.no_grad():
next_act = perturbed_policy.act(torch.as_tensor(obs_new, dtype=torch.float32).to(device, non_blocking=True).detach())
transition = (obs, torch.tensor(action).float(), torch.tensor(r).float(), obs_new, torch.tensor(next_act).float(), torch.tensor(float(done_bool)))
buffer.push((perturbed_params.detach(), transition))
obs = obs_new
if done:
# Log results
wandb.log({'rew': rew,
'steps': statistics.total_ts,
'episode': statistics.episode,
})
obs = env.reset()
obs = torch.as_tensor(obs, dtype=torch.float32)
if config['observation_normalization']:
statistics.push_obs(obs)
obs = statistics.normalize(obs)
rew = 0
statistics.episode += 1
# Perturbe policy
perturbed_policy = perturbe_policy(ac.pi)
perturbed_params = nn.utils.parameters_to_vector(list(perturbed_policy.parameters())).to(device,
non_blocking=True).detach()
statistics.len_episode = 0
# Update
if statistics.total_ts % config['update_every_ts'] == 0:
update()
# Evaluate current policy
if statistics.total_ts % config['ts_evaluation'] == 0:
evaluate(ac)
return
# Initial evaluation
evaluate(ac)
# Loop over episodes
train()