-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpssvf.py
224 lines (172 loc) · 6.9 KB
/
pssvf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import numpy as np
import gym
import core
import torch.nn as nn
import torch.optim as optim
import wandb
from torch.distributions.normal import Normal
# Default hyperparameters
hyperparameter_defaults = dict(
algo='pssvf',
env_name='CartPole-v1',
neurons_policy=(),
neurons_vf=(64,64),
policy_iters=10,
vf_iters=10,
batch_size=16,
learning_rate_policy=1e-3,
learning_rate_vf=1e-3,
noise_policy=1.0, # std of distribution generating the noise for the perturbed policy
observation_normalization=True,
size_buffer=100000,
max_episodes=1000000000,
max_timesteps=100000,
run=1,
deterministic_actor=True,
ts_evaluation=1000,
)
# Initialize wandb
wandb.init(config=hyperparameter_defaults, project="pssvf_rl")
config = wandb.config
# Use GPU or CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device = torch.device('cpu')
# Create env
env = gym.make(config['env_name'])
env_test = gym.make(config['env_name'])
# Create replay buffer, policy, vf
buffer = core.Buffer(config['size_buffer'])
statistics = core.Statistics(env.observation_space.shape)
ac = core.MLPActorCritic(config['algo'], env.observation_space, env.action_space,
hidden_sizes_actor=tuple(config['neurons_policy']), activation=nn.Tanh,
hidden_sizes_critic=tuple(config['neurons_vf']), device=device,
critic=True, deterministic_actor=config['deterministic_actor'])
print("Number of policy params:", len(nn.utils.parameters_to_vector(list(ac.pi.parameters()))))
print("Number of value function params:", len(nn.utils.parameters_to_vector(list(ac.v.parameters()))))
# Setup optimizer
optimize_policy = optim.Adam(ac.pi.parameters(), lr=config['learning_rate_policy'])
optimize_vf = optim.Adam(ac.v.parameters(), lr=config['learning_rate_vf'])
wandb.watch(ac.pi)
wandb.watch(ac.v)
def compute_policy_loss(parameters):
return -ac.v.forward(parameters)
def compute_vf_loss(parameters, rewards):
return ((ac.v(parameters) - rewards)**2).mean()
def perturbe_policy(policy):
dist = Normal(torch.zeros(len(torch.nn.utils.parameters_to_vector(policy.parameters()))), scale=1)
delta = dist.sample().to(device=device, non_blocking=True).detach()
# Perturbe policy parameters
params = torch.nn.utils.parameters_to_vector(policy.parameters()).detach()
perturbed_params = params + config['noise_policy'] * delta
# Copy perturbed parameters into a new policy
perturbed_policy = core.MLPActorCritic(config['algo'], env.observation_space, env.action_space,
hidden_sizes_actor=tuple(config['neurons_policy']), activation=nn.Tanh,
hidden_sizes_critic=tuple(config['neurons_vf']), device=device,
critic=False, deterministic_actor=config['deterministic_actor'])
torch.nn.utils.vector_to_parameters(perturbed_params, perturbed_policy.parameters())
return perturbed_policy
def update():
for _ in range(config['vf_iters']):
# Sample batch
hist = buffer.sample_replay(config['batch_size'])
prog, rew = zip(*hist)
prog = torch.stack(prog)
rew = torch.from_numpy(np.asarray(rew)).float().to(device=device, non_blocking=True).detach()
optimize_vf.zero_grad()
loss_vf = compute_vf_loss(prog, rew)
loss_vf.backward()
optimize_vf.step()
# Freeze PSSVF
for p in ac.v.parameters():
p.requires_grad = False
# Update policy
for _ in range(config['policy_iters']):
params = nn.utils.parameters_to_vector(list(ac.pi.parameters())).to(device, non_blocking=True)
optimize_policy.zero_grad()
loss_policy = compute_policy_loss(params)
loss_policy.backward()
optimize_policy.step()
# Unfreeze PSSVF
for p in ac.v.parameters():
p.requires_grad = True
return
def evaluate(ac):
rew_evals = []
with torch.no_grad():
for _ in range(10):
# Simulate a trajectory and compute the total reward
done = False
obs = env_test.reset()
rew_eval = 0
while not done:
obs = torch.as_tensor(obs, dtype=torch.float32)
if config['observation_normalization'] and statistics.episode > 0:
obs = statistics.normalize(obs)
with torch.no_grad():
action = ac.act(obs.to(device, non_blocking=True).detach())
obs_new, r, done, _ = env_test.step(action)
# Remove survival bonus
if config['env_name'] == 'Hopper-v3':
rew_eval += r - 1
else:
rew_eval += r
obs = obs_new
rew_evals.append(rew_eval)
statistics.rew_eval = np.mean(rew_evals)
statistics.push_rew(np.mean(rew_evals))
# Log results
wandb.log({'rew_eval': statistics.rew_eval,
'average_reward': np.mean(statistics.rewards),
'average_last_rewards': np.mean(statistics.last_rewards),
})
print("Ts", statistics.total_ts, "Ep", statistics.episode, "rew_eval", statistics.rew_eval)
return
def simulate(ac):
# Simulate a trajectory and compute the total reward
done = False
obs = env.reset()
rew = 0
while not done:
obs = torch.as_tensor(obs, dtype=torch.float32)
if config['observation_normalization']:
statistics.push_obs(obs)
if statistics.episode > 0:
obs = statistics.normalize(obs)
with torch.no_grad():
action = ac.act(obs.to(device, non_blocking=True).detach())
obs_new, r, done, _ = env.step(action)
# Remove survival bonus
if config['env_name'] == 'Hopper-v3':
rew += r - 1
else:
rew += r
statistics.total_ts += 1
# Evaluate current policy
if statistics.total_ts % config['ts_evaluation'] == 0:
evaluate(ac)
obs = obs_new
return rew
def train():
# Collect data with perturbed policy
perturbed_policy = perturbe_policy(ac.pi)
# Extract list of perturbed policy parameters
perturbed_params = nn.utils.parameters_to_vector(list(perturbed_policy.parameters())).to(device, non_blocking=True).detach()
# Simulate a trajectory and compute the total reward
rew = simulate(perturbed_policy)
# Store data in replay buffer
buffer.history.append((perturbed_params, rew))
statistics.episode += 1
# Update
update()
# Log results
wandb.log({'rew': rew,
'steps': statistics.total_ts,
'episode': statistics.episode,
})
return
# Initial evaluation
evaluate(ac)
# Loop over episodes
while statistics.total_ts < config['max_timesteps'] and statistics.episode < config['max_episodes']:
train()