From 166e998158a507997a8c672a28c928acc7fe0b80 Mon Sep 17 00:00:00 2001 From: Rodrigo de Lazcano Date: Mon, 4 Sep 2023 12:39:40 -0400 Subject: [PATCH] Fix 166 and tests (#169) * initial tests * finish tests * remove task during step * fix tests --------- Co-authored-by: rodrigodelazcano --- .../envs/franka_kitchen/kitchen_env.py | 10 +- tests/envs/franka_kitchen/test_kitchen_env.py | 123 ++++++++++++++++++ 2 files changed, 128 insertions(+), 5 deletions(-) create mode 100644 tests/envs/franka_kitchen/test_kitchen_env.py diff --git a/gymnasium_robotics/envs/franka_kitchen/kitchen_env.py b/gymnasium_robotics/envs/franka_kitchen/kitchen_env.py index 2158b53e..beba0af9 100644 --- a/gymnasium_robotics/envs/franka_kitchen/kitchen_env.py +++ b/gymnasium_robotics/envs/franka_kitchen/kitchen_env.py @@ -355,7 +355,8 @@ def compute_reward( desired_goal: "dict[str, np.ndarray]", info: "dict[str, Any]", ): - for task in info["tasks_to_complete"]: + self.step_task_completions.clear() + for task in self.tasks_to_complete: distance = np.linalg.norm(achieved_goal[task] - desired_goal[task]) complete = distance < BONUS_THRESH if complete: @@ -394,7 +395,6 @@ def _get_obs(self, robot_obs): def step(self, action): robot_obs, _, terminated, truncated, info = self.robot_env.step(action) obs = self._get_obs(robot_obs) - info = {"tasks_to_complete": list(self.tasks_to_complete)} reward = self.compute_reward(obs["achieved_goal"], self.goal, info) @@ -405,13 +405,13 @@ def step(self, action): for element in self.step_task_completions ] + info = {"tasks_to_complete": list(self.tasks_to_complete)} info["step_task_completions"] = self.step_task_completions.copy() for task in self.step_task_completions: if task not in self.episode_task_completions: self.episode_task_completions.append(task) info["episode_task_completions"] = self.episode_task_completions - self.step_task_completions.clear() if self.terminate_on_tasks_completed: # terminate if there are no more tasks to complete terminated = len(self.episode_task_completions) == len(self.goal.keys()) @@ -423,9 +423,9 @@ def reset(self, *, seed: Optional[int] = None, **kwargs): self.episode_task_completions.clear() robot_obs, _ = self.robot_env.reset(seed=seed) obs = self._get_obs(robot_obs) - self.task_to_complete = set(self.goal.keys()) + self.tasks_to_complete = set(self.goal.keys()) info = { - "tasks_to_complete": self.task_to_complete, + "tasks_to_complete": list(self.tasks_to_complete), "episode_task_completions": [], "step_task_completions": [], } diff --git a/tests/envs/franka_kitchen/test_kitchen_env.py b/tests/envs/franka_kitchen/test_kitchen_env.py new file mode 100644 index 00000000..e6616cf6 --- /dev/null +++ b/tests/envs/franka_kitchen/test_kitchen_env.py @@ -0,0 +1,123 @@ +from copy import deepcopy + +import gymnasium as gym +import pytest + +from gymnasium_robotics.envs.franka_kitchen.kitchen_env import ( + OBS_ELEMENT_GOALS, + OBS_ELEMENT_INDICES, +) + +TASKS = ["microwave", "kettle"] + + +@pytest.mark.parametrize( + "remove_task_when_completed, terminate_on_tasks_completed", + [[True, True], [False, False]], +) +def test_task_completion(remove_task_when_completed, terminate_on_tasks_completed): + """This test checks the different task completion configurations for the FrankaKitchen-v1 environment. + + The test checks if the info items returned in each step (`tasks_to_complete`, `step_task_completions`, `episode_task_completions`) are correct and correspond + to the behavior of the environment configured at initialization with the arguments: `remove_task_when_completed` and `terminate_on_tasks_completed`. + """ + env = gym.make( + "FrankaKitchen-v1", + tasks_to_complete=TASKS, + remove_task_when_completed=remove_task_when_completed, + terminate_on_tasks_completed=terminate_on_tasks_completed, + ) + # Test task completion for 3 consecutive episodes + for _ in range(3): + tasks_to_complete = deepcopy(TASKS) + completed_tasks = set() + _, info = env.reset() + assert set(info["tasks_to_complete"]) == set( + TASKS + ), f"The item `tasks_to_complete` returned by info when the environment is reset: {set(info['tasks_to_complete'])}, must be equal to the `task_to_complete` argument used to initialize the environment: {tasks_to_complete}." + assert ( + len(info["step_task_completions"]) == 0 + ), f"The key `step_task_completions` returned by info when the environment is reset: {set(info['step_task_completions'])}, must be empty." + assert ( + len(info["episode_task_completions"]) == 0 + ), f"The key `episode_task_completions` returned by info when the environment is reset: {set(info['episode_task_completions'])}, must be empty." + + terminated = False + + # Complete a task sequentially for each environment step + for task in TASKS: + # Force task to be achieved + env.data.qpos[OBS_ELEMENT_INDICES[task]] = OBS_ELEMENT_GOALS[task] + _, _, terminated, _, info = env.step(env.action_space.sample()) + completed_tasks.add(task) + + assert ( + set(info["episode_task_completions"]) == completed_tasks + ), f"The key `episode_task_completions` returned by info: {set(info['episode_task_completions'])}, must be equal to the tasks along the current episode: {completed_tasks}." + if remove_task_when_completed: + tasks_to_complete.remove(task) + assert set(info["tasks_to_complete"]) == set( + tasks_to_complete + ), f"If environment is initialized with `remove_task_when_completed=True` the item `tasks_to_complete` returned by info: {set(info['tasks_to_complete'])}, must be equal to the tasks that haven't been completed yet: {tasks_to_complete}." + assert set(info["step_task_completions"]) == { + task + }, f"The key `step_task_completions` returned by info: {set(info['step_task_completions'])}, must be equal to the tasks completed after the current step: {task}." + + else: + assert set(info["tasks_to_complete"]) == set( + tasks_to_complete + ), f"If environment is initialized with `remove_task_when_completed=False` the item `tasks_to_complete` returned by info: {set(info['tasks_to_complete'])}, must be equal to the set of tasks the environment was initialized with: {tasks_to_complete}." + assert ( + set(info["step_task_completions"]) == completed_tasks + ), f"The key `step_task_completions` returned by info: {set(info['step_task_completions'])}, must be equal to the tasks completed after the current step: {completed_tasks}." + + if terminate_on_tasks_completed: + assert ( + terminated + ), "If the environment is initialized with `terminate_on_tasks_complete=True`, the episode must terminate after all tasks are completed." + else: + assert ( + not terminated + ), "If the environment is initialized with `terminate_on_tasks_complete=False`, the episode must not terminate after all tasks are completed." + + # Complete a task during the same environment step + for _ in range(3): + tasks_to_complete = deepcopy(TASKS) + completed_tasks = set() + _, info = env.reset() + + terminated = False + + # Complete a task sequentially for each environment step + for task in TASKS: + # Force task to be achieved + env.data.qpos[OBS_ELEMENT_INDICES[task]] = OBS_ELEMENT_GOALS[task] + completed_tasks.add(task) + + _, _, terminated, _, info = env.step(env.action_space.sample()) + assert ( + set(info["step_task_completions"]) == completed_tasks + ), f"The key `step_task_completions` returned by info: {set(info['step_task_completions'])}, must be equal to the tasks completed after the current step: {completed_tasks}." + assert ( + set(info["episode_task_completions"]) == completed_tasks + ), f"The key `episode_task_completions` returned by info: {set(info['episode_task_completions'])}, must be equal to the tasks along the current episode: {completed_tasks}." + if remove_task_when_completed: + assert ( + len(info["tasks_to_complete"]) == 0 + ), f"If environment is initialized with `remove_task_when_completed=True` and all tasks were completed the item `tasks_to_complete` returned by info: {set(info['tasks_to_complete'])}, must be empty." + + else: + assert set(info["tasks_to_complete"]) == set( + tasks_to_complete + ), f"If environment is initialized with `remove_task_when_completed=False` the item `tasks_to_complete` returned by info: {set(info['tasks_to_complete'])}, must be equal to the set of tasks the environment was initialized with: {tasks_to_complete}." + + if terminate_on_tasks_completed: + assert ( + terminated + ), "If the environment is initialized with `terminate_on_tasks_complete=True`, the episode must terminate after all tasks are completed." + else: + assert ( + not terminated + ), "If the environment is initialized with `terminate_on_tasks_complete=False`, the episode must not terminate after all tasks are completed." + + env.close()