-
Notifications
You must be signed in to change notification settings - Fork 36
/
synthesize_fuse.py
125 lines (95 loc) · 5.47 KB
/
synthesize_fuse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import imageio
import numpy as np
import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render_motion, render_motion_mouth
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel, MotionNetwork, MouthMotionNetwork
import torch.nn.functional as F
def dilate_fn(bin_img, ksize=13):
pad = (ksize - 1) // 2
out = F.max_pool2d(bin_img, kernel_size=ksize, stride=1, padding=pad)
return out
def render_set(model_path, name, iteration, views, gaussians, motion_net, gaussians_mouth, motion_net_mouth, pipeline, background, fast, dilate):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(model_path, name, "ours_{}".format(iteration), "gt")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
all_preds = []
all_gts = []
all_preds_face = []
all_preds_mouth = []
for idx, view in enumerate(tqdm(views, desc="Rendering progress", ascii=True)):
with torch.no_grad():
render_pkg = render_motion(view, gaussians, motion_net, pipeline, background, frame_idx=0)
render_pkg_mouth = render_motion_mouth(view, gaussians_mouth, motion_net_mouth, pipeline, background, frame_idx=0)
# gt = view.original_image[0:3, :, :]
# torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
# torchvision.utils.save_image(gt, os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
if dilate:
alpha_mouth = dilate_fn(render_pkg_mouth["alpha"][None])[0]
else:
alpha_mouth = render_pkg_mouth["alpha"]
mouth_image = render_pkg_mouth["render"] + view.background.cuda() / 255.0 * (1.0 - alpha_mouth)
# alpha = gaussian_blur(render_pkg["alpha"], [3, 3], 2)
alpha = render_pkg["alpha"]
image = render_pkg["render"] + mouth_image * (1.0 - alpha)
pred = (image[0:3, ...].clamp(0, 1).permute(1, 2, 0).detach().cpu().numpy()* 255).astype(np.uint8)
all_preds.append(pred)
if not fast:
all_preds_face.append((render_pkg["render"].clamp(0, 1).permute(1, 2, 0).detach().cpu().numpy()* 255).astype(np.uint8))
all_preds_mouth.append((render_pkg_mouth["render"].clamp(0, 1).permute(1, 2, 0).detach().cpu().numpy()* 255).astype(np.uint8))
all_gts.append(view.original_image.permute(1, 2, 0).cpu().numpy().astype(np.uint8))
imageio.mimwrite(os.path.join(render_path, 'out.mp4'), all_preds, fps=25, quality=8, macro_block_size=1)
if not fast:
imageio.mimwrite(os.path.join(gts_path, 'out.mp4'), all_gts, fps=25, quality=8, macro_block_size=1)
imageio.mimwrite(os.path.join(render_path, 'out_face.mp4'), all_preds_face, fps=25, quality=8, macro_block_size=1)
imageio.mimwrite(os.path.join(render_path, 'out_mouth.mp4'), all_preds_mouth, fps=25, quality=8, macro_block_size=1)
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, use_train : bool, fast, dilate):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
gaussians_mouth = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, shuffle=False)
motion_net = MotionNetwork(args=dataset).cuda()
motion_net_mouth = MouthMotionNetwork(args=dataset).cuda()
(model_params, motion_params, model_mouth_params, motion_mouth_params) = torch.load(os.path.join(dataset.model_path, "chkpnt_fuse_latest.pth"))
motion_net.load_state_dict(motion_params, strict=False)
gaussians.restore(model_params, None)
motion_net_mouth.load_state_dict(motion_mouth_params, strict=False)
gaussians_mouth.restore(model_mouth_params, None)
# motion_net.fix(gaussians.get_xyz.cuda())
# motion_net_mouth.fix(gaussians_mouth.get_xyz.cuda())
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
render_set(dataset.model_path, "test" if not use_train else "train", scene.loaded_iter, scene.getTestCameras() if not use_train else scene.getTrainCameras(), gaussians, motion_net, gaussians_mouth, motion_net_mouth, pipeline, background, fast, dilate)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--use_train", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--fast", action="store_true")
parser.add_argument("--dilate", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.use_train, args.fast, args.dilate)