We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi, I'm trying to do HNM via hn_mine.py. The dataset exists as below:
# sample.jsonl (120k rows) { "query": "사채권자가 자본금 감소에 대하여 이의를 제기하려면 사채권자집회의 결의가 있어야 하나, 법원 ...(omitted) "pos": "아닙니다. 사채권자가 자본금 감소에 대하여 이의를 제기하려면 사채권자집회의 결의 ...(omitted) }
python hn_mine.py \ --input_file sample.jsonl \ --output_file sample_output.jsonl \ --range_for_sampling 2-30 \ --negative_number 5 \ --use_gpu_for_searching \ --embedder_name_or_path .../models/bge-m3 \ (downloaded via hugging face git clone (BAAI/BGE-m3)) --embedder_model_class encoder-only-m3 \ (or none, tried both).
However, the following Hard Negative dataset was extracted:
{ "query": "사채권자가 자본금 감소에 대하여 이의를 제기하려면 사채권자집회의 결의가 있어야 하나, 법원 ...(omitted) "pos": "아닙니다. 사채권자가 자본금 감소에 대하여 이의를 제기하려면 사채권자집회의 결의 ...(omitted) "neg": [ "初", "샹", "듭", "試", "ち" ] }
My dataset is fully natural language data. How can I solve this problem?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi, I'm trying to do HNM via hn_mine.py. The dataset exists as below:
However, the following Hard Negative dataset was extracted:
My dataset is fully natural language data. How can I solve this problem?
The text was updated successfully, but these errors were encountered: