forked from chenxuluo/GST-video
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
124 lines (93 loc) · 4.15 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch.utils.data as data
from PIL import Image
import os
import os.path
import numpy as np
from numpy.random import randint
class VideoRecord(object):
def __init__(self, row):
self._data = row
@property
def path(self):
return self._data[0]
@property
def num_frames(self):
return int(self._data[1])
@property
def label(self):
return int(self._data[2])
class VideoDataSet(data.Dataset):
def __init__(self, root_path, list_file,
num_segments, image_tmpl, new_length = 1, transform=None,
random_shift=True, test_mode=False):
self.root_path = root_path
self.list_file = list_file
self.new_length = new_length
self.num_segments = num_segments
self.image_tmpl = image_tmpl
self.transform = transform
self.random_shift = random_shift
self.test_mode = test_mode
self._parse_list()
def _load_image(self, directory, idx):
try:
return [Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(idx))).convert('RGB')]
except Exception:
print(('error loading image:', os.path.join(self.root_path, directory, self.image_tmpl.format(idx))))
return [Image.open(os.path.join(self.root_path, directory, self.image_tmpl.format(1))).convert('RGB')]
def _parse_list(self):
# check the frame number is large >3:
# usualy it is [video_id, num_frames, class_idx]
tmp = [x.strip().split('\t') for x in open(self.list_file)]
tmp = [item for item in tmp if int(item[1])>=3]
self.video_list = [VideoRecord(item) for item in tmp]
print(('video number:%d'%(len(self.video_list))))
def _sample_indices(self, record):
"""
:param record: VideoRecord
:return: list
"""
average_duration = (record.num_frames - self.new_length + 1) // self.num_segments
if average_duration > 0:
offsets = np.multiply(list(range(self.num_segments)), average_duration) + randint(average_duration, size=self.num_segments)
elif record.num_frames > self.num_segments:
offsets = np.sort(randint(record.num_frames - self.new_length + 1, size=self.num_segments))
else:
offsets = np.zeros((self.num_segments,))
return offsets + 1
def _get_val_indices(self, record):
if record.num_frames > self.num_segments + self.new_length - 1:
tick = (record.num_frames - self.new_length + 1) / float(self.num_segments)
offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)])
else:
offsets = np.zeros((self.num_segments,))
return offsets + 1
def _get_test_indices(self, record):
tick = (record.num_frames - self.new_length + 1) / float(self.num_segments)
offsets = np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segments)])
return offsets + 1
def __getitem__(self, index):
record = self.video_list[index]
# check this is a legit video folder
while not os.path.exists(os.path.join(self.root_path, record.path, self.image_tmpl.format(1))):
print((os.path.join(self.root_path, record.path, self.image_tmpl.format(1))))
index = np.random.randint(len(self.video_list))
record = self.video_list[index]
if not self.test_mode:
segment_indices = self._sample_indices(record) if self.random_shift else self._get_val_indices(record)
else:
segment_indices = self._get_test_indices(record)
return self.get(record, segment_indices)
def get(self, record, indices):
images = list()
for seg_ind in indices:
p = int(seg_ind)
for i in range(self.new_length):
seg_imgs = self._load_image(record.path, p)
images.extend(seg_imgs)
if p < record.num_frames:
p += 1
process_data,record_label = self.transform((images,record.label))
return process_data, record_label
def __len__(self):
return len(self.video_list)