-
Notifications
You must be signed in to change notification settings - Fork 0
/
recursion_fibonacci.html
250 lines (233 loc) · 7.45 KB
/
recursion_fibonacci.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="css/prism.css">
<style>
html,
body {
box-sizing: border-box;
margin: 0;
padding: 0;
height: 100%;
font-size: 12px;
}
body {
min-height: 500px;
}
section {
display: flex;
flex-wrap: wrap;
}
.code {
margin-top: 3px;
}
pre[class*=language-] {
margin: 0;
padding: 0;
}
main {
border-top: 2px solid #ccc;
width: 100%;
height: 65%;
min-height: 200px;
}
</style>
<title>斐波那契数列</title>
</head>
<body>
<section class="frames"></section>
<section style="display: none;">
<pre><code class="language-java">int factorial(int n) {
if (n == 1) {
return 1;
}
return n * factorial(n - 1);
}</code></pre>
</section>
<main></main>
<section>
<div style='background-color:#00FF99; margin: 2px 2px 0 0; padding: 4px 6px;'>进行中</div>
<div style='background-color:#ccc; margin: 2px 2px 0 0; padding: 4px 6px;'>已结束</div>
</section>
<div style='margin: 2px 2px 0 0; padding: 4px 6px;'>
<span>n </span><input type="text" id='n' class="saveable" value="5">
<span>动画速度(ms) </span><input type="number" step="100" value="300" id="animate_speed" class="saveable">
<input style='font-size:12px;' type="button" value="保存" onclick="onSave('fibonacci')">
<input style='font-size:12px;' type="button" value="显示重复" onclick="showDuplicate()">
<input type="checkbox" id="enable_cache" class="saveable bool"> 记忆化
</div>
<script src="js/p5.js"></script>
<script src="js/p5-svg.js"></script>
<script src="js/util.js"></script>
<script src="js/prism.js"></script>
<script>
/*
时间复杂度计算公式 ==> 2*f(n+1)-1
t(0) = 1
t(1) = 1
t(2) = t(0) + t(1) + 1 = 3 2*f(3)-1
t(3) = t(1) + t(2) + 1 = 5 2*f(4)-1
t(4) = t(2) + t(3) + 1 = 9 2*f(5)-1
t(5) = t(3) + t(4) + 1 = 15 2*f(6)-1
t(6) = t(4) + t(5) + 1 = 25 2*f(7)-1
...
通项公式计算
f(0) = (1.618^0 - 0.618^0) / 2.236 = 0
f(1) = (1.618^1 + 0.618^1) / 2.236 = 1
f(2) = (1.618^2 - 0.618^2) / 2.236 = 1
f(3) = (1.618^3 + 0.618^3) / 2.236 = 2
f(4) = (1.618^2 - 0.618^4) / 2.236 = 3
... 随着n增大, 后面0.618所在的项越来越不重要, 可以忽略
f(7) = (1.618^7 ...) / 2.236 = 13
*/
const colorMap = new Map()
const colorArray = ['#1abc9c', '#e67e22', '#3498db', '#f1c40f', '#9b59b6', '#e74c3c']
let colorIndex = 0
function showDuplicate() {
d.add({ cloned: clone(tree) }, ({ cloned }) => {
recursion(cloned, width / 2, DIAMETER, n - 1, 0, 0)
})
d.updateFrameButtons()
}
function recursion(node, x, y, deep, px, py) {
if (node) {
if (node.txt) {
if (px && py) {
stroke('white')
line(x, y, px, py)
noStroke()
}
}
recursion(node.left, x - Math.pow(2, deep) * DIAMETER / 4, y + Math.pow(2, n - deep) * DIAMETER / 4, deep - 1, x, y)
recursion(node.right, x + Math.pow(2, deep) * DIAMETER / 4, y + Math.pow(2, n - deep) * DIAMETER / 4, deep - 1, x, y)
if (node.txt) {
let c = colorMap.get(node.txt)
if (!c) {
colorMap.set(node.txt, colorArray[colorIndex++])
}
fill(colorMap.get(node.txt))
circle(x, y, DIAMETER)
fill('black')
text(node.txt, x, y + 3)
}
}
}
const options = loadOptionsFromStorage('fibonacci')
const DIAMETER = 25 // 直径 diameter
const RECT_WIDTH = 30 // 矩形宽度、圆直径
const RECT_HEIGHT = 20 // 值矩形高度
const SPACING = 1 // 间隙
const INDEX_RECT_HEIGHT = 20 // 索引矩形高度
const n = options.n
const d = new Draw(options.animate_speed)
const enable_cache = options.enable_cache
function preload() {
// const font = loadFont('JetBrainsMono-Regular.ttf')
}
function setup() {
const WIN_WIDTH = document.querySelector('main').clientWidth
const WIN_HEIGHT = document.querySelector('main').clientHeight
const FONT_SIZE = 10
createCanvas(WIN_WIDTH, WIN_HEIGHT, SVG)
textSize(FONT_SIZE)
textAlign(CENTER)
d.add({}, frame)
fibonacci(n, tree)
d.updateFrameButtons()
noStroke()
}
function draw() {
d.draw(() => background('#2d2d2d'))
}
function frame({ cloned, array: cache }) {
drawTree(cloned, width / 2, DIAMETER, n - 1, 0, 0)
if (enable_cache) {
const LEFT = (width - cache.length * (RECT_WIDTH + SPACING)) / 2
for (let i = 0; i < cache.length; i++) {
// 注:矩形以左下角 x, y 作为起点坐标
let x = LEFT + i * (RECT_WIDTH + SPACING)
let y = height - (SPACING + INDEX_RECT_HEIGHT)
stroke(255)
noStroke()
fill('#67cdcc')
rect(x, y, RECT_WIDTH, -RECT_HEIGHT)
fill('#ffffff')
text(cache[i], x + RECT_WIDTH / 2, y - 6)
fill('#cc99cd')
rect(x, height, RECT_WIDTH, -INDEX_RECT_HEIGHT)
fill('#ffffff')
text(`f(${i})`, x + RECT_WIDTH / 2, height - 6)
}
}
}
function drawTree(node, x, y, deep, px, py) {
if (node) {
if (node.txt) {
if (px && py) {
stroke('white')
line(x, y, px, py)
noStroke()
}
}
drawTree(node.left, x - Math.pow(2, deep) * DIAMETER / 4, y + Math.pow(2, n - deep) * DIAMETER / 4, deep - 1, x, y)
drawTree(node.right, x + Math.pow(2, deep) * DIAMETER / 4, y + Math.pow(2, n - deep) * DIAMETER / 4, deep - 1, x, y)
if (node.txt) {
if (node.done) {
fill('#ccc')
} else {
fill('#00FF99')
}
circle(x, y, DIAMETER)
fill('black')
text(node.txt, x, y + 3)
}
}
}
const tree = { done: false }
const cache = []
cache[0] = 0
cache[1] = 1
function fibonacci(n, t) {
t.txt = `f(${n})`
// console.log('去', clone(tree))
d.add({ cloned: clone(tree), array: cache }, frame)
if (enable_cache && cache[n] !== undefined) {
t.done = true
d.add({ cloned: clone(tree), array: cache }, frame)
return cache[n]
}
if (n == 0) {
t.done = true
// console.log('回', n, clone(tree))
d.add({ cloned: clone(tree), array: cache }, frame)
return 0
}
if (n == 1) {
t.done = true
// console.log('回', n, clone(tree))
d.add({ cloned: clone(tree), array: cache }, frame)
return 1
}
t.left = { done: false }
t.right = { done: false }
const l = fibonacci(n - 1, t.left)
const r = fibonacci(n - 2, t.right)
const m = l + r
t.done = true
// d.add({ cloned: clone(tree), array:cache }, frame)
if (enable_cache) {
cache[n] = m
}
d.add({ cloned: clone(tree), array: cache }, frame)
// console.log('回', n, clone(tree))
return m
}
function clone(tree) {
return JSON.parse(JSON.stringify(tree))
}
</script>
</body>
</html>