forked from PaddlePaddle/PaddleX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_infer.cpp
305 lines (270 loc) · 8.38 KB
/
model_infer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include <gflags/gflags.h>
#include <string>
#include <vector>
#include "model_deploy/common/include/paddle_deploy.h"
PaddleDeploy::Model* model;
/*
* 模型初始化/注册接口
*
* model_type: 初始化模型类型: det,seg,clas,paddlex
*
* model_filename: 模型文件路径
*
* params_filename: 参数文件路径
*
* cfg_file: 配置文件路径
*
* use_gpu: 是否使用GPU
*
* gpu_id: 指定第x号GPU
*
* paddlex_model_type: model_type为paddlx时,返回的实际paddlex模型的类型: det, seg, clas
*/
extern "C" __declspec(dllexport) void InitModel(const char* model_type, const char* model_filename, const char* params_filename, const char* cfg_file, bool use_gpu, int gpu_id, char* paddlex_model_type)
{
// create model
model = PaddleDeploy::CreateModel(model_type); //FLAGS_model_type
// model init
model->Init(cfg_file);
// inference engine init
PaddleDeploy::PaddleEngineConfig engine_config;
engine_config.model_filename = model_filename;
engine_config.params_filename = params_filename;
engine_config.use_gpu = use_gpu;
engine_config.gpu_id = gpu_id;
bool init = model->PaddleEngineInit(engine_config);
if (init)
{
std::cout << "init model success" << std::endl;
}
// det, seg, clas, paddlex
if (strcmp(model_type, "paddlex") == 0) // 是paddlex模型,则返回具体支持的模型类型: det, seg, clas
{
// detector
if (model->yaml_config_["model_type"].as<std::string>() == std::string("detector"))
{
strcpy(paddlex_model_type, "det");
}
else if (model->yaml_config_["model_type"].as<std::string>() == std::string("segmenter"))
{
strcpy(paddlex_model_type, "seg");
}
else if (model->yaml_config_["model_type"].as<std::string>() == std::string("classifier"))
{
strcpy(paddlex_model_type, "clas");
}
}
}
/*
* 检测推理接口
*
* img: input for predicting.
*
* nWidth: width of img.
*
* nHeight: height of img.
*
* nChannel: channel of img.
*
* output: result of pridict ,include category_id£¬score£¬coordinate¡£
*
* nBoxesNum£º number of box
*
* LabelList: label list of result
*/
extern "C" __declspec(dllexport) void Det_ModelPredict(const unsigned char* img, int nWidth, int nHeight, int nChannel, float* output, int* nBoxesNum, char* LabelList)
{
// prepare data
std::vector<cv::Mat> imgs;
int nType = 0;
if (nChannel == 3)
{
nType = CV_8UC3;
}
else
{
std::cout << "Only support 3 channel image." << std::endl;
return;
}
cv::Mat input = cv::Mat::zeros(cv::Size(nWidth, nHeight), nType);
memcpy(input.data, img, nHeight * nWidth * nChannel * sizeof(uchar));
//cv::imwrite("./1.png", input);
imgs.push_back(std::move(input));
// predict
std::vector<PaddleDeploy::Result> results;
model->Predict(imgs, &results, 1);
// nBoxesNum[0] = results.size(); // results.size()得到的是batch_size
nBoxesNum[0] = results[0].det_result->boxes.size(); // 得到单张图片预测的bounding box数
std::string label = "";
//std::cout << "res: " << results[num] << std::endl;
for (int i = 0; i < results[0].det_result->boxes.size(); i++) // 得到所有框的数据
{
//std::cout << "category: " << results[num].det_result->boxes[i].category << std::endl;
label = label + results[0].det_result->boxes[i].category + " ";
// labelindex
output[i * 6 + 0] = results[0].det_result->boxes[i].category_id; // 类别的id
// score
output[i * 6 + 1] = results[0].det_result->boxes[i].score; // 得分
//// box
output[i * 6 + 2] = results[0].det_result->boxes[i].coordinate[0]; // x1, y1, x2, y2
output[i * 6 + 3] = results[0].det_result->boxes[i].coordinate[1]; // 左上、右下的顶点
output[i * 6 + 4] = results[0].det_result->boxes[i].coordinate[2];
output[i * 6 + 5] = results[0].det_result->boxes[i].coordinate[3];
}
memcpy(LabelList, label.c_str(), strlen(label.c_str()));
}
/*
* 分割推理接口
*
* img: input for predicting.
*
* nWidth: width of img.
*
* nHeight: height of img.
*
* nChannel: channel of img.
*
* output: result of pridict ,include label_map
*/
extern "C" __declspec(dllexport) void Seg_ModelPredict(const unsigned char* img, int nWidth, int nHeight, int nChannel, unsigned char* output)
{
// prepare data
std::vector<cv::Mat> imgs;
int nType = 0;
if (nChannel == 3)
{
nType = CV_8UC3;
}
else
{
std::cout << "Only support 3 channel image." << std::endl;
return;
}
cv::Mat input = cv::Mat::zeros(cv::Size(nWidth, nHeight), nType);
memcpy(input.data, img, nHeight * nWidth * nChannel * sizeof(uchar));
//cv::imwrite("./1.png", input);
imgs.push_back(std::move(input));
// predict
std::vector<PaddleDeploy::Result> results;
model->Predict(imgs, &results, 1);
std::vector<uint8_t> result_map = results[0].seg_result->label_map.data; // vector<uint8_t> -- 结果map
// 拷贝输出结果到输出上返回 -- 将vector<uint8_t>转成unsigned char *
memcpy(output, &result_map[0], result_map.size() * sizeof(uchar));
}
/*
* 识别推理接口
*
* img: input for predicting.
*
* nWidth: width of img.
*
* nHeight: height of img.
*
* nChannel: channel of img.
*
* score: result of pridict ,include score
*
* category: result of pridict ,include category_string
*
* category_id: result of pridict ,include category_id
*/
extern "C" __declspec(dllexport) void Cls_ModelPredict(const unsigned char* img, int nWidth, int nHeight, int nChannel, float* score, char* category, int* category_id)
{
// prepare data
std::vector<cv::Mat> imgs;
int nType = 0;
if (nChannel == 3)
{
nType = CV_8UC3;
}
else
{
std::cout << "Only support 3 channel image." << std::endl;
return;
}
cv::Mat input = cv::Mat::zeros(cv::Size(nWidth, nHeight), nType);
memcpy(input.data, img, nHeight * nWidth * nChannel * sizeof(uchar));
//cv::imwrite("./1.png", input);
imgs.push_back(std::move(input));
// predict
std::vector<PaddleDeploy::Result> results;
model->Predict(imgs, &results, 1);
*category_id = results[0].clas_result->category_id;
// 拷贝输出类别结果到输出上返回 -- string --> char*
memcpy(category, results[0].clas_result->category.c_str(), strlen(results[0].clas_result->category.c_str()));
// 拷贝输出概率值返回
*score = results[0].clas_result->score;
}
/*
* MaskRCNN推理接口
*
* img: input for predicting.
*
* nWidth: width of img.
*
* nHeight: height of img.
*
* nChannel: channel of img.
*
* box_output: result of pridict ,include label+score+bbox
*
* mask_output: result of pridict ,include label_map
*
* nBoxesNum: result of pridict ,include BoxesNum
*
* LabelList: result of pridict ,include LabelList
*/
extern "C" __declspec(dllexport) void Mask_ModelPredict(const unsigned char* img, int nWidth, int nHeight, int nChannel, float* box_output, unsigned char* mask_output, int* nBoxesNum, char* LabelList)
{
// prepare data
std::vector<cv::Mat> imgs;
int nType = 0;
if (nChannel == 3)
{
nType = CV_8UC3;
}
else
{
std::cout << "Only support 3 channel image." << std::endl;
return;
}
cv::Mat input = cv::Mat::zeros(cv::Size(nWidth, nHeight), nType);
memcpy(input.data, img, nHeight * nWidth * nChannel * sizeof(uchar));
imgs.push_back(std::move(input));
// predict -- 多次点击单张推理时会出错
std::vector<PaddleDeploy::Result> results;
model->Predict(imgs, &results, 1); // 在Infer处发生错误
nBoxesNum[0] = results[0].det_result->boxes.size(); // 得到单张图片预测的bounding box数
std::string label = "";
for (int i = 0; i < results[0].det_result->boxes.size(); i++) // 得到所有框的数据
{
// 边界框预测结果
label = label + results[0].det_result->boxes[i].category + " ";
// labelindex
box_output[i * 6 + 0] = results[0].det_result->boxes[i].category_id; // 类别的id
// score
box_output[i * 6 + 1] = results[0].det_result->boxes[i].score; // 得分
//// box
box_output[i * 6 + 2] = results[0].det_result->boxes[i].coordinate[0]; // x1, y1, x2, y2
box_output[i * 6 + 3] = results[0].det_result->boxes[i].coordinate[1]; // 左上、右下的顶点
box_output[i * 6 + 4] = results[0].det_result->boxes[i].coordinate[2];
box_output[i * 6 + 5] = results[0].det_result->boxes[i].coordinate[3];
//Mask预测结果
for (int j = 0; j < results[0].det_result->boxes[i].mask.data.size(); j++)
{
if (mask_output[j] == 0)
{
mask_output[j] = results[0].det_result->boxes[i].mask.data[j];
}
}
}
memcpy(LabelList, label.c_str(), strlen(label.c_str()));
}
/*
* 模型销毁/注销接口
*/
extern "C" __declspec(dllexport) void DestructModel()
{
delete model;
std::cout << "destruct model success" << std::endl;
}