-
Notifications
You must be signed in to change notification settings - Fork 137
/
Copy pathmain.py
129 lines (104 loc) · 4.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import pandas as pd
from six.moves import cPickle
import time,os,random
import itertools
import torch
from torch.autograd import Variable
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.loss import NLLLoss,MultiLabelSoftMarginLoss,MultiLabelMarginLoss,BCELoss
import opts
import models
import utils
timeStamp = time.strftime("%Y%m%d%H%M%S", time.localtime(int(time.time()) ))
performance_log_file = os.path.join("log","result"+timeStamp+ ".csv")
if not os.path.exists(performance_log_file):
with open(performance_log_file,"w") as f:
f.write("argument\n")
f.close()
def train(opt,train_iter, test_iter,verbose=True):
global_start= time.time()
logger = utils.getLogger()
model=models.setup(opt)
if torch.cuda.is_available():
model.cuda()
params = [param for param in model.parameters() if param.requires_grad] #filter(lambda p: p.requires_grad, model.parameters())
model_info =";".join( [str(k)+":"+ str(v) for k,v in opt.__dict__.items() if type(v) in (str,int,float,list,bool)])
logger.info("# parameters:" + str(sum(param.numel() for param in params)))
logger.info(model_info)
model.train()
optimizer = utils.getOptimizer(params,name=opt.optimizer, lr=opt.learning_rate,scheduler= utils.get_lr_scheduler(opt.lr_scheduler))
loss_fun = F.cross_entropy
filename = None
percisions=[]
for i in range(opt.max_epoch):
for epoch,batch in enumerate(train_iter):
optimizer.zero_grad()
start= time.time()
text = batch.text[0] if opt.from_torchtext else batch.text
predicted = model(text)
loss= loss_fun(predicted,batch.label)
loss.backward()
utils.clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
if verbose:
if torch.cuda.is_available():
logger.info("%d iteration %d epoch with loss : %.5f in %.4f seconds" % (i,epoch,loss.cpu().data.numpy(),time.time()-start))
else:
logger.info("%d iteration %d epoch with loss : %.5f in %.4f seconds" % (i,epoch,loss.data.numpy()[0],time.time()-start))
percision=utils.evaluation(model,test_iter,opt.from_torchtext)
if verbose:
logger.info("%d iteration with percision %.4f" % (i,percision))
if len(percisions)==0 or percision > max(percisions):
if filename:
os.remove(filename)
filename = model.save(metric=percision)
percisions.append(percision)
# while(utils.is_writeable(performance_log_file)):
df = pd.read_csv(performance_log_file,index_col=0,sep="\t")
df.loc[model_info,opt.dataset] = max(percisions)
df.to_csv(performance_log_file,sep="\t")
logger.info(model_info +" with time :"+ str( time.time()-global_start)+" ->" +str( max(percisions) ) )
print(model_info +" with time :"+ str( time.time()-global_start)+" ->" +str( max(percisions) ) )
if __name__=="__main__":
parameter_pools = utils.parse_grid_parameters("config/grid_search_cnn.ini")
# parameter_pools={
# "model":["lstm","cnn","fasttext"],
# "keep_dropout":[0.8,0.9,1.0],
# "batch_size":[32,64,128],
# "learning_rate":[100,10,1,1e-1,1e-2,1e-3],
# "optimizer":["adam"],
# "lr_scheduler":[None]
# }
opt = opts.parse_opt()
if "CUDA_VISIBLE_DEVICES" not in os.environ.keys():
os.environ["CUDA_VISIBLE_DEVICES"] =opt.gpu
train_iter, test_iter = utils.loadData(opt)
# if from_torchtext:
# train_iter, test_iter = utils.loadData(opt)
# else:
# import dataHelper
# train_iter, test_iter = dataHelper.loadData(opt)
if False:
model=models.setup(opt)
print(opt.model)
if torch.cuda.is_available():
model.cuda()
train(opt,train_iter, test_iter)
else:
pool =[ arg for arg in itertools.product(*parameter_pools.values())]
random.shuffle(pool)
args=[arg for i,arg in enumerate(pool) if i%opt.gpu_num==opt.gpu]
for arg in args:
olddataset = opt.dataset
for k,v in zip(parameter_pools.keys(),arg):
opt.__setattr__(k,v)
if "dataset" in parameter_pools and olddataset != opt.dataset:
train_iter, test_iter = utils.loadData(opt)
train(opt,train_iter, test_iter,verbose=False)