-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlayerAI_3.py
235 lines (204 loc) · 8.59 KB
/
PlayerAI_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from BaseAI_3 import BaseAI
from Grid_3 import Grid
from time import perf_counter
from copy import deepcopy
from math import log2
from random import randint
class PlayerAI(BaseAI):
init_time = None
max_depth = None
calc_queue = None
children_queued = None
time_elapsed = None
nodes_explored = None
avg_time_node = .00089
def __init__(self, grid=None):
self.grid = grid
self.heuristic_val = None
def heuristic(self):
max_tile = log2(self.grid.getMaxTile())
max_in_corner = 0
try:
merge_weight = .0052 * (1 + (6 / (11 - max_tile)))
except ZeroDivisionError:
merge_weight = .0052 * 7
monotonicity_weight = .0068 * max_tile # .0067
empty_spaces_weight = .0047 * (max_tile / 3) # .005
merge = merge_weight * (self.merge_potential_h() + .5 * self.ftr_merge_pot())
if self.max_in_corner(max_tile):
max_in_corner = .15 * max_tile
monotonicity = monotonicity_weight * self.monotonicity_h()
empty_spaces = empty_spaces_weight * self.empty_spaces_h()
self.heuristic_val = merge + monotonicity + empty_spaces + max_in_corner + max_tile / 20
return self.heuristic_val
def max_in_corner(self, max_tile):
for pos in self.find_all(2 ** max_tile):
if pos[0] % 3 == 0 and pos[1] % 3 == 0:
return True
def merge_potential_h(self): # high end = 100
potential = 0
i = 2
while log2(i) <= 11:
indices = self.find_all(i)
if len(indices) > 0:
avg_dist = 0
for index in indices:
for sub_index in indices:
avg_dist += abs(index[0] - sub_index[0]) + abs(index[1] - sub_index[1]) - 1
potential += (avg_dist / len(indices) + 1) * (log2(i))
i *= 2
return -potential
def find_all(self, value):
indices = []
for row in range(4):
for col in range(4):
if self.grid.map[row][col] == value:
indices.append((row, col))
return indices
def ftr_merge_pot(self):
potential = 0
i = 64
while log2(i) <= 8:
indices = self.find_all(i * 2)
indices_i = self.find_all(i)
if len(indices) > 0 and len(indices_i) > 0:
avg_dist = 0
for index in indices:
for sub_index in indices_i:
avg_dist += abs(index[0] - sub_index[0]) + abs(index[1] - sub_index[1]) - 2
potential += (avg_dist / (len(indices) * len(indices_i))) * (log2(i)) * .001
i *= 2
return -potential
def monotonicity_h(self):
penalty = 0
penalties = [0, 0]
for row in range(4):
map_row = self.grid.map[row]
self.out_of_place(map_row, penalties)
penalty += min(penalties)
penalties = [0, 0]
for col in range(4):
map_col = [self.grid.map[i][col] for i in range(4)]
self.out_of_place(map_col, penalties)
penalty += min(penalties[0], penalties[1])
return -penalty
@staticmethod
def out_of_place(map_sec, penalties):
try:
penalties[0] += log2(max([map_sec[i] for i in range(3) if map_sec[i] > map_sec[i + 1]]))
except ValueError:
pass
try:
penalties[1] += log2(max(map_sec[i + 1] for i in range(3) if map_sec[i + 1] > map_sec[i]))
except ValueError:
pass
def empty_spaces_h(self): # high end = 9-12
count = 0
for row in range(4):
for col in range(4):
if self.grid.map[row][col] == 0:
count += 1
return count ** 2
def children(self, player, self_depth):
children = []
if player:
for move in self.grid.getAvailableMoves():
new_grid = deepcopy(self.grid)
new_grid.move(move)
children.append(PlayerAI(deepcopy(new_grid)))
children.sort(key=lambda x: x.heuristic())
else:
for pos in self.grid.getAvailableCells():
if pos[0] % 3 == 0 or pos[1] % 3 == 0:
new_grid = deepcopy(self.grid)
new_grid.insertTile(pos, 2)
children.append(PlayerAI(deepcopy(new_grid)))
children.sort(key=lambda x: x.heuristic(), reverse=True)
return children
# self.enough_time(len(children), deepcopy(self_depth)) else []
def minimax(self, state, alpha, beta, max_player, self_depth, init_move):
PlayerAI.time_elapsed = perf_counter() - PlayerAI.init_time
children = deepcopy(state.children(max_player, deepcopy(self_depth)))
# if PlayerAI.calc_queue:
# PlayerAI.children_queued += len(children)
if self_depth > PlayerAI.max_depth:
PlayerAI.max_depth = self_depth
# if len(children) == 0:
if self_depth >= 5:
# PlayerAI.calc_queue = False
return state.heuristic_val, init_move
if max_player:
max_choice = (-10, init_move)
for child in children:
min_choice = self.minimax(child, deepcopy(alpha), deepcopy(beta), False, self_depth + 1, init_move)
if min_choice[0] > max_choice[0]:
max_choice = deepcopy(min_choice)
PlayerAI.nodes_explored += 1
alpha = max(alpha, deepcopy(max_choice[0]))
if alpha >= beta:
break
return max_choice
else:
min_choice = (10, init_move)
for child in children:
max_choice = self.minimax(child, deepcopy(alpha), deepcopy(beta), True, self_depth + 1, init_move)
if max_choice[0] < min_choice[0]:
min_choice = deepcopy(max_choice)
PlayerAI.nodes_explored += 1
beta = min(beta, deepcopy(min_choice[0]))
if alpha >= beta:
break
return min_choice
def enough_time(self, queueing, self_depth):
# estimate time to finish what is queued, don't add so much that this goes over .18
# using avg time elapsed per node queued, estimate the amount of time queued with the
# approximate total number of nodes in play - the number that have been explored
try:
avg_branch_factor = PlayerAI.children_queued / PlayerAI.max_depth
approx_nodes = self.num_nodes(avg_branch_factor, self_depth)
time_to_finish = self.avg_time_node * (approx_nodes + queueing)
return False if time_to_finish + PlayerAI.time_elapsed > .2 else True
except ZeroDivisionError:
return True
def num_nodes(self, factor, depth):
if depth <= 0:
return 0
return (factor ** depth) + self.num_nodes(factor, depth - 1)
def getMove(self, grid):
self.grid = grid
PlayerAI.init_time = perf_counter()
PlayerAI.max_depth = 1
PlayerAI.calc_queue = True
PlayerAI.children_queued = 0
PlayerAI.nodes_explored = 1
PlayerAI.time_elapsed = 0
alpha = -10
beta = 10
children = []
for move in self.grid.getAvailableMoves():
new_grid = deepcopy(self.grid)
new_grid.move(move)
children.append([PlayerAI(deepcopy(new_grid)), move])
children.sort(key=lambda x: x[0].heuristic())
max_choice = (-10, None)
for child in children:
min_choice = self.minimax(child[0], deepcopy(alpha), deepcopy(beta), False, 1, child[1])
if min_choice[0] > max_choice[0]:
max_choice = deepcopy(min_choice)
PlayerAI.nodes_explored += 1
alpha = max(alpha, deepcopy(max_choice[0]))
if alpha >= beta:
break
print(' found choice in: ', perf_counter() - PlayerAI.init_time, ' sec')
return max_choice[1]
def seq_moves(self):
grids = []
init_grid = Grid()
for row in range(4):
for col in range(4):
init_grid.map[row][col] = self.grid[row][col]
for i in range(5):
copy_grid = deepcopy(init_grid)
copy_grid.move(randint(0, 3))
grids.append(copy_grid.map)
return grids