forked from google-deepmind/alphafold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_alphafold.py
570 lines (499 loc) · 22 KB
/
run_alphafold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Full AlphaFold protein structure prediction script."""
import enum
import json
import os
import pathlib
import pickle
import random
import shutil
import sys
import time
from typing import Any, Dict, Union
from absl import app
from absl import flags
from absl import logging
from alphafold.common import confidence
from alphafold.common import protein
from alphafold.common import residue_constants
from alphafold.data import pipeline
from alphafold.data import pipeline_multimer
from alphafold.data import templates
from alphafold.data.tools import hhsearch
from alphafold.data.tools import hmmsearch
from alphafold.model import config
from alphafold.model import data
from alphafold.model import model
from alphafold.relax import relax
import jax.numpy as jnp
import numpy as np
# Internal import (7716).
logging.set_verbosity(logging.INFO)
@enum.unique
class ModelsToRelax(enum.Enum):
ALL = 0
BEST = 1
NONE = 2
flags.DEFINE_list(
'fasta_paths', None, 'Paths to FASTA files, each containing a prediction '
'target that will be folded one after another. If a FASTA file contains '
'multiple sequences, then it will be folded as a multimer. Paths should be '
'separated by commas. All FASTA paths must have a unique basename as the '
'basename is used to name the output directories for each prediction.')
flags.DEFINE_string('data_dir', None, 'Path to directory of supporting data.')
flags.DEFINE_string('output_dir', None, 'Path to a directory that will '
'store the results.')
flags.DEFINE_string('jackhmmer_binary_path', shutil.which('jackhmmer'),
'Path to the JackHMMER executable.')
flags.DEFINE_string('hhblits_binary_path', shutil.which('hhblits'),
'Path to the HHblits executable.')
flags.DEFINE_string('hhsearch_binary_path', shutil.which('hhsearch'),
'Path to the HHsearch executable.')
flags.DEFINE_string('hmmsearch_binary_path', shutil.which('hmmsearch'),
'Path to the hmmsearch executable.')
flags.DEFINE_string('hmmbuild_binary_path', shutil.which('hmmbuild'),
'Path to the hmmbuild executable.')
flags.DEFINE_string('kalign_binary_path', shutil.which('kalign'),
'Path to the Kalign executable.')
flags.DEFINE_string('uniref90_database_path', None, 'Path to the Uniref90 '
'database for use by JackHMMER.')
flags.DEFINE_string('mgnify_database_path', None, 'Path to the MGnify '
'database for use by JackHMMER.')
flags.DEFINE_string('bfd_database_path', None, 'Path to the BFD '
'database for use by HHblits.')
flags.DEFINE_string('small_bfd_database_path', None, 'Path to the small '
'version of BFD used with the "reduced_dbs" preset.')
flags.DEFINE_string('uniref30_database_path', None, 'Path to the UniRef30 '
'database for use by HHblits.')
flags.DEFINE_string('uniprot_database_path', None, 'Path to the Uniprot '
'database for use by JackHMMer.')
flags.DEFINE_string('pdb70_database_path', None, 'Path to the PDB70 '
'database for use by HHsearch.')
flags.DEFINE_string('pdb_seqres_database_path', None, 'Path to the PDB '
'seqres database for use by hmmsearch.')
flags.DEFINE_string('template_mmcif_dir', None, 'Path to a directory with '
'template mmCIF structures, each named <pdb_id>.cif')
flags.DEFINE_string('max_template_date', None, 'Maximum template release date '
'to consider. Important if folding historical test sets.')
flags.DEFINE_string('obsolete_pdbs_path', None, 'Path to file containing a '
'mapping from obsolete PDB IDs to the PDB IDs of their '
'replacements.')
flags.DEFINE_enum('db_preset', 'full_dbs',
['full_dbs', 'reduced_dbs'],
'Choose preset MSA database configuration - '
'smaller genetic database config (reduced_dbs) or '
'full genetic database config (full_dbs)')
flags.DEFINE_enum('model_preset', 'monomer',
['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'],
'Choose preset model configuration - the monomer model, '
'the monomer model with extra ensembling, monomer model with '
'pTM head, or multimer model')
flags.DEFINE_boolean('benchmark', False, 'Run multiple JAX model evaluations '
'to obtain a timing that excludes the compilation time, '
'which should be more indicative of the time required for '
'inferencing many proteins.')
flags.DEFINE_integer('random_seed', None, 'The random seed for the data '
'pipeline. By default, this is randomly generated. Note '
'that even if this is set, Alphafold may still not be '
'deterministic, because processes like GPU inference are '
'nondeterministic.')
flags.DEFINE_integer('num_multimer_predictions_per_model', 5, 'How many '
'predictions (each with a different random seed) will be '
'generated per model. E.g. if this is 2 and there are 5 '
'models then there will be 10 predictions per input. '
'Note: this FLAG only applies if model_preset=multimer')
flags.DEFINE_boolean('use_precomputed_msas', False, 'Whether to read MSAs that '
'have been written to disk instead of running the MSA '
'tools. The MSA files are looked up in the output '
'directory, so it must stay the same between multiple '
'runs that are to reuse the MSAs. WARNING: This will not '
'check if the sequence, database or configuration have '
'changed.')
flags.DEFINE_enum_class('models_to_relax', ModelsToRelax.BEST, ModelsToRelax,
'The models to run the final relaxation step on. '
'If `all`, all models are relaxed, which may be time '
'consuming. If `best`, only the most confident model '
'is relaxed. If `none`, relaxation is not run. Turning '
'off relaxation might result in predictions with '
'distracting stereochemical violations but might help '
'in case you are having issues with the relaxation '
'stage.')
flags.DEFINE_boolean('use_gpu_relax', None, 'Whether to relax on GPU. '
'Relax on GPU can be much faster than CPU, so it is '
'recommended to enable if possible. GPUs must be available'
' if this setting is enabled.')
FLAGS = flags.FLAGS
MAX_TEMPLATE_HITS = 20
RELAX_MAX_ITERATIONS = 0
RELAX_ENERGY_TOLERANCE = 2.39
RELAX_STIFFNESS = 10.0
RELAX_EXCLUDE_RESIDUES = []
RELAX_MAX_OUTER_ITERATIONS = 3
def _check_flag(flag_name: str,
other_flag_name: str,
should_be_set: bool):
if should_be_set != bool(FLAGS[flag_name].value):
verb = 'be' if should_be_set else 'not be'
raise ValueError(f'{flag_name} must {verb} set when running with '
f'"--{other_flag_name}={FLAGS[other_flag_name].value}".')
def _jnp_to_np(output: Dict[str, Any]) -> Dict[str, Any]:
"""Recursively changes jax arrays to numpy arrays."""
for k, v in output.items():
if isinstance(v, dict):
output[k] = _jnp_to_np(v)
elif isinstance(v, jnp.ndarray):
output[k] = np.array(v)
return output
def _save_confidence_json_file(
plddt: np.ndarray, output_dir: str, model_name: str
) -> None:
confidence_json = confidence.confidence_json(plddt)
# Save the confidence json.
confidence_json_output_path = os.path.join(
output_dir, f'confidence_{model_name}.json'
)
with open(confidence_json_output_path, 'w') as f:
f.write(confidence_json)
def _save_mmcif_file(
prot: protein.Protein,
output_dir: str,
model_name: str,
file_id: str,
model_type: str,
) -> None:
"""Crate mmCIF string and save to a file.
Args:
prot: Protein object.
output_dir: Directory to which files are saved.
model_name: Name of a model.
file_id: The file ID (usually the PDB ID) to be used in the mmCIF.
model_type: Monomer or multimer.
"""
mmcif_string = protein.to_mmcif(prot, file_id, model_type)
# Save the MMCIF.
mmcif_output_path = os.path.join(output_dir, f'{model_name}.cif')
with open(mmcif_output_path, 'w') as f:
f.write(mmcif_string)
def _save_pae_json_file(
pae: np.ndarray, max_pae: float, output_dir: str, model_name: str
) -> None:
"""Check prediction result for PAE data and save to a JSON file if present.
Args:
pae: The n_res x n_res PAE array.
max_pae: The maximum possible PAE value.
output_dir: Directory to which files are saved.
model_name: Name of a model.
"""
pae_json = confidence.pae_json(pae, max_pae)
# Save the PAE json.
pae_json_output_path = os.path.join(output_dir, f'pae_{model_name}.json')
with open(pae_json_output_path, 'w') as f:
f.write(pae_json)
def predict_structure(
fasta_path: str,
fasta_name: str,
output_dir_base: str,
data_pipeline: Union[pipeline.DataPipeline, pipeline_multimer.DataPipeline],
model_runners: Dict[str, model.RunModel],
amber_relaxer: relax.AmberRelaxation,
benchmark: bool,
random_seed: int,
models_to_relax: ModelsToRelax,
model_type: str,
):
"""Predicts structure using AlphaFold for the given sequence."""
logging.info('Predicting %s', fasta_name)
timings = {}
output_dir = os.path.join(output_dir_base, fasta_name)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
msa_output_dir = os.path.join(output_dir, 'msas')
if not os.path.exists(msa_output_dir):
os.makedirs(msa_output_dir)
# Get features.
t_0 = time.time()
feature_dict = data_pipeline.process(
input_fasta_path=fasta_path,
msa_output_dir=msa_output_dir)
timings['features'] = time.time() - t_0
# Write out features as a pickled dictionary.
features_output_path = os.path.join(output_dir, 'features.pkl')
with open(features_output_path, 'wb') as f:
pickle.dump(feature_dict, f, protocol=4)
unrelaxed_pdbs = {}
unrelaxed_proteins = {}
relaxed_pdbs = {}
relax_metrics = {}
ranking_confidences = {}
# Run the models.
num_models = len(model_runners)
for model_index, (model_name, model_runner) in enumerate(
model_runners.items()):
logging.info('Running model %s on %s', model_name, fasta_name)
t_0 = time.time()
model_random_seed = model_index + random_seed * num_models
processed_feature_dict = model_runner.process_features(
feature_dict, random_seed=model_random_seed)
timings[f'process_features_{model_name}'] = time.time() - t_0
t_0 = time.time()
prediction_result = model_runner.predict(processed_feature_dict,
random_seed=model_random_seed)
t_diff = time.time() - t_0
timings[f'predict_and_compile_{model_name}'] = t_diff
logging.info(
'Total JAX model %s on %s predict time (includes compilation time, see --benchmark): %.1fs',
model_name, fasta_name, t_diff)
if benchmark:
t_0 = time.time()
model_runner.predict(processed_feature_dict,
random_seed=model_random_seed)
t_diff = time.time() - t_0
timings[f'predict_benchmark_{model_name}'] = t_diff
logging.info(
'Total JAX model %s on %s predict time (excludes compilation time): %.1fs',
model_name, fasta_name, t_diff)
plddt = prediction_result['plddt']
_save_confidence_json_file(plddt, output_dir, model_name)
ranking_confidences[model_name] = prediction_result['ranking_confidence']
if (
'predicted_aligned_error' in prediction_result
and 'max_predicted_aligned_error' in prediction_result
):
pae = prediction_result['predicted_aligned_error']
max_pae = prediction_result['max_predicted_aligned_error']
_save_pae_json_file(pae, float(max_pae), output_dir, model_name)
# Remove jax dependency from results.
np_prediction_result = _jnp_to_np(dict(prediction_result))
# Save the model outputs.
result_output_path = os.path.join(output_dir, f'result_{model_name}.pkl')
with open(result_output_path, 'wb') as f:
pickle.dump(np_prediction_result, f, protocol=4)
# Add the predicted LDDT in the b-factor column.
# Note that higher predicted LDDT value means higher model confidence.
plddt_b_factors = np.repeat(
plddt[:, None], residue_constants.atom_type_num, axis=-1)
unrelaxed_protein = protein.from_prediction(
features=processed_feature_dict,
result=prediction_result,
b_factors=plddt_b_factors,
remove_leading_feature_dimension=not model_runner.multimer_mode)
unrelaxed_proteins[model_name] = unrelaxed_protein
unrelaxed_pdbs[model_name] = protein.to_pdb(unrelaxed_protein)
unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_name}.pdb')
with open(unrelaxed_pdb_path, 'w') as f:
f.write(unrelaxed_pdbs[model_name])
_save_mmcif_file(
prot=unrelaxed_protein,
output_dir=output_dir,
model_name=f'unrelaxed_{model_name}',
file_id=str(model_index),
model_type=model_type,
)
# Rank by model confidence.
ranked_order = [
model_name for model_name, confidence in
sorted(ranking_confidences.items(), key=lambda x: x[1], reverse=True)]
# Relax predictions.
if models_to_relax == ModelsToRelax.BEST:
to_relax = [ranked_order[0]]
elif models_to_relax == ModelsToRelax.ALL:
to_relax = ranked_order
elif models_to_relax == ModelsToRelax.NONE:
to_relax = []
for model_name in to_relax:
t_0 = time.time()
relaxed_pdb_str, _, violations = amber_relaxer.process(
prot=unrelaxed_proteins[model_name])
relax_metrics[model_name] = {
'remaining_violations': violations,
'remaining_violations_count': sum(violations)
}
timings[f'relax_{model_name}'] = time.time() - t_0
relaxed_pdbs[model_name] = relaxed_pdb_str
# Save the relaxed PDB.
relaxed_output_path = os.path.join(
output_dir, f'relaxed_{model_name}.pdb')
with open(relaxed_output_path, 'w') as f:
f.write(relaxed_pdb_str)
relaxed_protein = protein.from_pdb_string(relaxed_pdb_str)
_save_mmcif_file(
prot=relaxed_protein,
output_dir=output_dir,
model_name=f'relaxed_{model_name}',
file_id='0',
model_type=model_type,
)
# Write out relaxed PDBs in rank order.
for idx, model_name in enumerate(ranked_order):
ranked_output_path = os.path.join(output_dir, f'ranked_{idx}.pdb')
with open(ranked_output_path, 'w') as f:
if model_name in relaxed_pdbs:
f.write(relaxed_pdbs[model_name])
else:
f.write(unrelaxed_pdbs[model_name])
if model_name in relaxed_pdbs:
protein_instance = protein.from_pdb_string(relaxed_pdbs[model_name])
else:
protein_instance = protein.from_pdb_string(unrelaxed_pdbs[model_name])
_save_mmcif_file(
prot=protein_instance,
output_dir=output_dir,
model_name=f'ranked_{idx}',
file_id=str(idx),
model_type=model_type,
)
ranking_output_path = os.path.join(output_dir, 'ranking_debug.json')
with open(ranking_output_path, 'w') as f:
label = 'iptm+ptm' if 'iptm' in prediction_result else 'plddts'
f.write(json.dumps(
{label: ranking_confidences, 'order': ranked_order}, indent=4))
logging.info('Final timings for %s: %s', fasta_name, timings)
timings_output_path = os.path.join(output_dir, 'timings.json')
with open(timings_output_path, 'w') as f:
f.write(json.dumps(timings, indent=4))
if models_to_relax != ModelsToRelax.NONE:
relax_metrics_path = os.path.join(output_dir, 'relax_metrics.json')
with open(relax_metrics_path, 'w') as f:
f.write(json.dumps(relax_metrics, indent=4))
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
for tool_name in (
'jackhmmer', 'hhblits', 'hhsearch', 'hmmsearch', 'hmmbuild', 'kalign'):
if not FLAGS[f'{tool_name}_binary_path'].value:
raise ValueError(f'Could not find path to the "{tool_name}" binary. Make '
'sure it is installed on your system.')
use_small_bfd = FLAGS.db_preset == 'reduced_dbs'
_check_flag('small_bfd_database_path', 'db_preset',
should_be_set=use_small_bfd)
_check_flag('bfd_database_path', 'db_preset',
should_be_set=not use_small_bfd)
_check_flag('uniref30_database_path', 'db_preset',
should_be_set=not use_small_bfd)
run_multimer_system = 'multimer' in FLAGS.model_preset
model_type = 'Multimer' if run_multimer_system else 'Monomer'
_check_flag('pdb70_database_path', 'model_preset',
should_be_set=not run_multimer_system)
_check_flag('pdb_seqres_database_path', 'model_preset',
should_be_set=run_multimer_system)
_check_flag('uniprot_database_path', 'model_preset',
should_be_set=run_multimer_system)
if FLAGS.model_preset == 'monomer_casp14':
num_ensemble = 8
else:
num_ensemble = 1
# Check for duplicate FASTA file names.
fasta_names = [pathlib.Path(p).stem for p in FLAGS.fasta_paths]
if len(fasta_names) != len(set(fasta_names)):
raise ValueError('All FASTA paths must have a unique basename.')
if run_multimer_system:
template_searcher = hmmsearch.Hmmsearch(
binary_path=FLAGS.hmmsearch_binary_path,
hmmbuild_binary_path=FLAGS.hmmbuild_binary_path,
database_path=FLAGS.pdb_seqres_database_path)
template_featurizer = templates.HmmsearchHitFeaturizer(
mmcif_dir=FLAGS.template_mmcif_dir,
max_template_date=FLAGS.max_template_date,
max_hits=MAX_TEMPLATE_HITS,
kalign_binary_path=FLAGS.kalign_binary_path,
release_dates_path=None,
obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
else:
template_searcher = hhsearch.HHSearch(
binary_path=FLAGS.hhsearch_binary_path,
databases=[FLAGS.pdb70_database_path])
template_featurizer = templates.HhsearchHitFeaturizer(
mmcif_dir=FLAGS.template_mmcif_dir,
max_template_date=FLAGS.max_template_date,
max_hits=MAX_TEMPLATE_HITS,
kalign_binary_path=FLAGS.kalign_binary_path,
release_dates_path=None,
obsolete_pdbs_path=FLAGS.obsolete_pdbs_path)
monomer_data_pipeline = pipeline.DataPipeline(
jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
hhblits_binary_path=FLAGS.hhblits_binary_path,
uniref90_database_path=FLAGS.uniref90_database_path,
mgnify_database_path=FLAGS.mgnify_database_path,
bfd_database_path=FLAGS.bfd_database_path,
uniref30_database_path=FLAGS.uniref30_database_path,
small_bfd_database_path=FLAGS.small_bfd_database_path,
template_searcher=template_searcher,
template_featurizer=template_featurizer,
use_small_bfd=use_small_bfd,
use_precomputed_msas=FLAGS.use_precomputed_msas)
if run_multimer_system:
num_predictions_per_model = FLAGS.num_multimer_predictions_per_model
data_pipeline = pipeline_multimer.DataPipeline(
monomer_data_pipeline=monomer_data_pipeline,
jackhmmer_binary_path=FLAGS.jackhmmer_binary_path,
uniprot_database_path=FLAGS.uniprot_database_path,
use_precomputed_msas=FLAGS.use_precomputed_msas)
else:
num_predictions_per_model = 1
data_pipeline = monomer_data_pipeline
model_runners = {}
model_names = config.MODEL_PRESETS[FLAGS.model_preset]
for model_name in model_names:
model_config = config.model_config(model_name)
if run_multimer_system:
model_config.model.num_ensemble_eval = num_ensemble
else:
model_config.data.eval.num_ensemble = num_ensemble
model_params = data.get_model_haiku_params(
model_name=model_name, data_dir=FLAGS.data_dir)
model_runner = model.RunModel(model_config, model_params)
for i in range(num_predictions_per_model):
model_runners[f'{model_name}_pred_{i}'] = model_runner
logging.info('Have %d models: %s', len(model_runners),
list(model_runners.keys()))
amber_relaxer = relax.AmberRelaxation(
max_iterations=RELAX_MAX_ITERATIONS,
tolerance=RELAX_ENERGY_TOLERANCE,
stiffness=RELAX_STIFFNESS,
exclude_residues=RELAX_EXCLUDE_RESIDUES,
max_outer_iterations=RELAX_MAX_OUTER_ITERATIONS,
use_gpu=FLAGS.use_gpu_relax)
random_seed = FLAGS.random_seed
if random_seed is None:
random_seed = random.randrange(sys.maxsize // len(model_runners))
logging.info('Using random seed %d for the data pipeline', random_seed)
# Predict structure for each of the sequences.
for i, fasta_path in enumerate(FLAGS.fasta_paths):
fasta_name = fasta_names[i]
predict_structure(
fasta_path=fasta_path,
fasta_name=fasta_name,
output_dir_base=FLAGS.output_dir,
data_pipeline=data_pipeline,
model_runners=model_runners,
amber_relaxer=amber_relaxer,
benchmark=FLAGS.benchmark,
random_seed=random_seed,
models_to_relax=FLAGS.models_to_relax,
model_type=model_type,
)
if __name__ == '__main__':
flags.mark_flags_as_required([
'fasta_paths',
'output_dir',
'data_dir',
'uniref90_database_path',
'mgnify_database_path',
'template_mmcif_dir',
'max_template_date',
'obsolete_pdbs_path',
'use_gpu_relax',
])
app.run(main)