-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
405 lines (375 loc) · 17.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import pandas as pd
import numpy as np
from torch.utils.data import Dataset, DataLoader
import torch
import tqdm
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from scipy.stats import zscore
class SlidingWindowDataset(Dataset):
def __init__(self, folder_path, window_size, batch_size,stocks_feature,is_training=True):
self.folder_path = folder_path
self.window_size = window_size
self.batch_size = batch_size
self.data = []
self.indices = []
self.stocks_feature = stocks_feature
self.y = []
self.min_max_scaler = MinMaxScaler()
test_list = os.listdir('./dataset_test_v0')
# 读取文件夹中的所有CSV文件
if is_training:
for file_name in os.listdir(folder_path):
if file_name.endswith('.csv'):
file_path = os.path.join(folder_path, file_name)
df = pd.read_csv(file_path)
if file_name in test_list:
#print(len(df),len(df.iloc[:-100]))
self.data.append(df.iloc[:-100])
else:
self.data.append(df)
# self.indices.extend(range(len(df) - window_size))
print('stocks num:{}'.format(len(self.data)))
# #v0
# for stock in tqdm.tqdm(self.data,desc="loading data"):
# for i in range(len(stock) - window_size + 1):
# #处理开盘价
# open = stock['open'][i:i + window_size]
# self.stocks_feature['open'].append(open)
# # 处理收盘价
# close = stock['close'][i:i + window_size]
# self.stocks_feature['close'].append(close)
# #process ema5
# ema5 = stock['EMA_5'][i:i + window_size]
# self.stocks_feature['ema5'].append(ema5)
# #process ema10
# ema10 = stock['EMA_10'][i:i + window_size]
# self.stocks_feature['ema10'].append(ema10)
# #process ema20
# ema20 = stock['EMA_20'][i:i + window_size]
# self.stocks_feature['ema20'].append(ema20)
# # process a_share_capital
# a_share_capital = stock['a_share_capital'][i:i + window_size]
# self.stocks_feature['a_share_capital'].append(a_share_capital)
# #process rsi5
# rsi5 = stock['rsi5'][i:i + window_size]
# self.stocks_feature['rsi5'].append(rsi5)
# #process rsi10
# rsi10 = stock['rsi10'][i:i + window_size]
# self.stocks_feature['rsi10'].append(rsi10)
# #process rsi14
# rsi14 = stock['rsi14'][i:i + window_size]
# self.stocks_feature['rsi14'].append(rsi14)
# #process Return
# Return = stock['Return'][i:i + window_size]
# self.stocks_feature['Return'].append(Return)
# #process ema5_trend
# ema5_trend = stock['EMA_5_trend'][i:i + window_size]
# self.stocks_feature['EMA_5_trend'].append(ema5_trend)
# #process ema10_trend
# ema10_trend = stock['EMA_10_trend'][i:i + window_size]
# self.stocks_feature['EMA_10_trend'].append(ema10_trend)
# #process ema20_trend
# ema20_trend = stock['EMA_20_trend'][i:i + window_size]
# self.stocks_feature['EMA_20_trend'].append(ema20_trend)
# #process pseudo_y
# pseudo_y = stock['pseudo_y'][i:i + window_size]
# self.stocks_feature['pseudo_y'].append(pseudo_y)
# #process volume 越靠近1成交量越大
# volume = stock['volume'][i:i + window_size]
# self.stocks_feature['volume'].append(volume)
# #process turnover_rate
# turnover_rate = stock['turnover_rate'][i:i + window_size]
# self.stocks_feature['turnover_rate'].append(turnover_rate)
# # process turnover
# turnover = stock['turnover'][i:i + window_size]
# self.stocks_feature['turnover'].append(turnover)
# #process type
# type = stock['type'][i:i + window_size]
# self.stocks_feature['type'].append(type)
#
# label_y = stock['y'][i:i + window_size]
# label_y = np.array(label_y)
# self.y.append(label_y)
#v1
for stock in tqdm.tqdm(self.data,desc="loading data"):
for feature in self.stocks_feature.keys():
for i in range(5,len(stock) - window_size + 1,1):
open = stock[feature][i:i + window_size]
self.stocks_feature[feature].append(open)
print(f"num_samples {len(self.stocks_feature['open'])} num_y {len(self.y)}")
self.num_samples = len(self.stocks_feature['open'])
def __len__(self):
return self.num_samples
def scale_to_range(self,column):
min_val = np.min(column)
max_val = np.max(column)
return (column - min_val) / (max_val - min_val)
def __getitem__(self, idx): #v0
input = []
# process close
close = zscore(self.stocks_feature['close'][idx].values)
input.append(close)
# process open
open = zscore(self.stocks_feature['open'][idx].values)
input.append(open)
# process next_open
next_open = zscore(self.stocks_feature['next_open'][idx].values)
input.append(next_open)
# process ema5
EMA_5 = zscore(self.stocks_feature['EMA_5'][idx].values)
input.append(EMA_5)
# process ema10
EMA_10 = zscore(self.stocks_feature['EMA_10'][idx].values)
input.append(EMA_10)
# process ema20
EMA_20 = zscore(self.stocks_feature['EMA_20'][idx].values)
input.append(EMA_20)
# process rsi5
rsi5 = zscore(self.stocks_feature['rsi5'][idx].values)
input.append(rsi5)
# process rsi10
rsi10 = zscore(self.stocks_feature['rsi10'][idx].values)
input.append(rsi10)
# process rsi14
rsi14 = zscore(self.stocks_feature['rsi14'][idx].values)
input.append(rsi14)
# process Return
Return = zscore(self.stocks_feature['Return'][idx].values)
input.append(Return)
# process a_share_capital
a_share_capital_min_max = self.stocks_feature['a_share_capital_percentage'][idx].values
input.append(a_share_capital_min_max)
# process float_a_share_capital
float_a_share_capital_min_max = zscore(
self.stocks_feature['float_a_share_capital_percentage'][idx].values)
input.append(float_a_share_capital_min_max)
# process ema5_trend
ema5_trend = zscore(self.stocks_feature['EMA_5_trend'][idx].values)
input.append(ema5_trend)
# process ema10_trend
ema10_trend = zscore(self.stocks_feature['EMA_10_trend'][idx].values)
input.append(ema10_trend)
# process ema20_trend
ema20_trend = zscore(self.stocks_feature['EMA_20_trend'][idx].values)
input.append(ema20_trend)
# process pseudo_y
pseudo_y = zscore(self.stocks_feature['pseudo_y'][idx].values)
input.append(pseudo_y)
#process volume 越靠近1成交量越大
volume_rank = self.stocks_feature['volume'][idx].rank(method='min')
volume_rank_min_max = zscore(volume_rank.values)
input.append(volume_rank_min_max)
# process turnover_rate
turnover_rate_rank = self.stocks_feature['turnover_rate'][idx].rank(method='min')
turnover_rate_min_max = zscore(turnover_rate_rank.values)
input.append(turnover_rate_min_max)
# process turnover
turnover_rank = self.stocks_feature['turnover'][idx].rank(method='min')
turnover_rank_min_max = zscore(turnover_rank.values)
input.append(turnover_rank_min_max)
# process type
# type = self.stocks_feature['type'][idx]
# type = type / 2
# input.append(type)
sample = np.array(input)
label = zscore(self.stocks_feature['y'][idx].values)
return torch.tensor(sample, dtype=torch.float32), torch.tensor(label, dtype=torch.float32).unsqueeze(0)
def test_preprocess_v1(self, data): #v1
stock_window_feature = []
# 处理开盘价
input = stock_window_feature
# process close
close = zscore(data['close'].values)
input.append(close)
# process open
open = zscore(data['open'].values)
input.append(open)
# process next_open
next_open = zscore(data['next_open'].values)
input.append(next_open)
# process ema5
EMA_5 = zscore(data['EMA_5'].values)
input.append(EMA_5)
# process ema10
EMA_10 = zscore(data['EMA_10'].values)
input.append(EMA_10)
# process ema20
EMA_20 = zscore(data['EMA_20'].values)
input.append(EMA_20)
# process rsi5
rsi5 = zscore(data['rsi5'].values)
input.append(rsi5)
# process rsi10
rsi10 = zscore(data['rsi10'].values)
input.append(rsi10)
# process rsi14
rsi14 = zscore(data['rsi14'].values)
input.append(rsi14)
# process Return
Return = zscore(data['Return'].values)
input.append(Return)
# process a_share_capital
a_share_capital_min_max = zscore(data['a_share_capital_percentage'].values)
input.append(a_share_capital_min_max)
# process float_a_share_capital
float_a_share_capital_min_max = zscore(
data['float_a_share_capital_percentage'].values)
input.append(float_a_share_capital_min_max)
# process ema5_trend
ema5_trend = zscore(data['EMA_5_trend'].values)
input.append(ema5_trend)
# process ema10_trend
ema10_trend = zscore(data['EMA_10_trend'].values)
input.append(ema10_trend)
# process ema20_trend
ema20_trend = zscore(data['EMA_20_trend'].values)
input.append(ema20_trend)
# process pseudo_y
pseudo_y = zscore(data['pseudo_y'].values)
input.append(pseudo_y)
# process volume 越靠近1成交量越大
volume_rank = data['volume'].rank(method='min')
volume_rank_min_max = zscore(volume_rank.values)
input.append(volume_rank_min_max)
# process turnover_rate
turnover_rate_rank = data['turnover_rate'].rank(method='min')
turnover_rate_min_max = zscore(turnover_rate_rank.values)
input.append(turnover_rate_min_max)
# process turnover
turnover_rank = data['turnover'].rank(method='min')
turnover_rank_min_max = zscore(turnover_rank.values)
input.append(turnover_rank_min_max)
# process type
# type = self.stocks_feature['type'][idx]
# type = type / 2
# input.append(type)
sample = np.array(input)
label_y = data['y'].values
return input, label_y
class SlidingWindowDataset_test(Dataset):
def __init__(self, folder_path, input_columns, target_column, window_size, batch_size):
self.folder_path = folder_path
self.input_columns = input_columns
self.target_column = target_column
self.window_size = window_size
self.batch_size = batch_size
self.data = []
self.indices = []
self.stocks_feature = []
self.y = []
self.min_max_scaler = MinMaxScaler()
# 读取文件夹中的所有CSV文件
for file_name in os.listdir(folder_path):
if file_name.endswith('.csv'):
file_path = os.path.join(folder_path, file_name)
df = pd.read_csv(file_path)
self.data.append(df)
# self.indices.extend(range(len(df) - window_size))
print('stocks num:{}'.format(len(self.data)))
#self.stocks_feature, self.y = self.preprocess_df(self.data,self.window_size)
print(f"num_samples {len(self.stocks_feature)} num_y {len(self.y)}")
self.num_samples = len(self.stocks_feature)
def preprocess_df(self,stock,window_size):
stocks_feature,y= [],[]
for i in range(len(stock) - self.window_size + 1):
stock_window_feature = []
#处理开盘价
open = stock['open'][i:i + window_size]
open_min_max = self.min_max_scaler.fit_transform(open.values.reshape(-1, 1))
open_min_max = open_min_max.flatten()
stock_window_feature.append(open_min_max)
# 处理收盘价
close = stock['close'][i:i + window_size]
close_min_max = self.min_max_scaler.fit_transform(close.values.reshape(-1, 1))
close_min_max = close_min_max.flatten()
stock_window_feature.append(close_min_max)
#process ema5
ema5 = stock['EMA_5'][i:i + window_size]
ema5 = self.min_max_scaler.fit_transform(ema5.values.reshape(-1, 1))
ema5 = ema5.flatten()
stock_window_feature.append(ema5)
#process ema10
ema10 = stock['EMA_10'][i:i + window_size]
ema10 = self.min_max_scaler.fit_transform(ema10.values.reshape(-1, 1))
ema10 = ema10.flatten()
stock_window_feature.append(ema10)
#process ema20
ema20 = stock['EMA_20'][i:i + window_size]
ema20 = self.min_max_scaler.fit_transform(ema20.values.reshape(-1, 1))
ema20 = ema20.flatten()
stock_window_feature.append(ema20)
# process a_share_capital
a_share_capital = stock['a_share_capital'][i:i + window_size]
a_share_capital_min_max = self.min_max_scaler.fit_transform(a_share_capital.values.reshape(-1, 1))
a_share_capital_min_max = a_share_capital_min_max.flatten()
stock_window_feature.append(a_share_capital_min_max)
#process rsi5
rsi5 = stock['rsi5'][i:i + window_size]/100
stock_window_feature.append(rsi5)
#process rsi10
rsi10 = stock['rsi10'][i:i + window_size]/100
stock_window_feature.append(rsi10)
#process rsi14
rsi14 = stock['rsi14'][i:i + window_size]/100
stock_window_feature.append(rsi14)
#process Return
Return = stock['Return'][i:i + window_size]
stock_window_feature.append(Return)
#process ema5_trend
ema5_trend = stock['EMA_5_trend'][i:i + window_size]
stock_window_feature.append(ema5_trend)
#process ema10_trend
ema10_trend = stock['EMA_10_trend'][i:i + window_size]
stock_window_feature.append(ema10_trend)
#process ema20_trend
ema20_trend = stock['EMA_20_trend'][i:i + window_size]
stock_window_feature.append(ema20_trend)
#process pseudo_y
pseudo_y = stock['pseudo_y'][i:i + window_size]
stock_window_feature.append(pseudo_y)
#process volume 越靠近1成交量越大
volume_rank = stock['volume'][i:i + window_size].rank(method='min')
volume_rank_min_max = self.min_max_scaler.fit_transform(volume_rank.values.reshape(-1, 1))
volume_rank_min_max = volume_rank_min_max.flatten()
stock_window_feature.append(volume_rank_min_max)
#process turnover_rate
turnover_rate_rank = stock['turnover_rate'][i:i + window_size].rank(method='min')
turnover_rate_min_max = self.min_max_scaler.fit_transform(turnover_rate_rank.values.reshape(-1, 1))
turnover_rate_min_max = turnover_rate_min_max.flatten()
stock_window_feature.append(turnover_rate_min_max)
# process turnover
turnover_rank = stock['turnover'][i:i + window_size].rank(method='min')
turnover_rank_min_max = self.min_max_scaler.fit_transform(turnover_rank.values.reshape(-1, 1))
turnover_rank_min_max = turnover_rank_min_max.flatten()
stock_window_feature.append(turnover_rank_min_max)
#process type
type = stock['type'][i:i + window_size]
type = type/2
stock_window_feature.append(type)
stock_window_feature = np.array(stock_window_feature)
stocks_feature.append(stock_window_feature)
label_y = stock['y'][i:i + window_size]*10
label_y = np.array(label_y)
y.append(label_y)
#print(stocks_feature)
return stock_window_feature, label_y
def __len__(self):
return self.num_samples // self.batch_size
def __getitem__(self, idx):
sample = self.stocks_feature[idx]
label = self.y[idx]
return torch.tensor(sample, dtype=torch.float32), torch.tensor(label, dtype=torch.float32)
# 示例使用
if __name__ == '__main__':
folder_path = './dataset_useful_case_v0' # 替换为你的文件夹路径
input_columns = ['percentage'] # 替换f为你的输入列索引
target_column = 'y' # 替换为你的目标列索引
window_size = 30 # 替换为你想要的窗口大小
batch_size = 32 # 替换为你想要的batch大小
dataset = SlidingWindowDataset(folder_path, input_columns, target_column, window_size, batch_size)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 遍历数据加载器
for batch_X, batch_y in dataloader:
print(batch_X.shape) # 输出: torch.Size([batch_size, window_size, num_features])
print(batch_y.shape) # 输出: torch.Size([batch_size, 1])