-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_data.py
462 lines (390 loc) · 18.8 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import numpy as np
import pandas as pd
import tqdm
import numpy as np
import os
import shutil
import matplotlib.pyplot as plt
import seaborn as sns
import talib
from scipy.stats import zscore
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from scipy.stats import zscore
def date_num(root_path):
day_num = []
os.makedirs('./dataset_30',exist_ok=True)
for csv in os.listdir(root_path):
df = pd.read_csv(os.path.join(root_path, csv), skiprows=0, sep=',', header=0,index_col=0)
num = df.shape[0]
if num>=30:
shutil.copyfile(os.path.join(root_path,csv),os.path.join('./dataset_30',csv))
#day_num.append(num)
# print(len(day_num))
# plt.hist(np.array(day_num).T, bins=300, facecolor="blue", edgecolor="black", alpha=0.7,density=False)
# # 显示横轴标签
# plt.xlabel("区间")
# # 显示纵轴标签
# plt.ylabel("频数/频率")
# # 显示图标题
# plt.title("频数/频率分布直方图")
# plt.show()
def percentage_up_down(root_path):
os.makedirs('./dataset_30',exist_ok=True)
for csv in tqdm.tqdm(os.listdir(root_path)):
increase = [0]
ret_backward = [0]
ret_forward = [0]
df = pd.read_csv(os.path.join(root_path,csv), skiprows=0, header=0,index_col=0)
stock_close = df['close']
stock_open = df['open']
for i in range(1,len(stock_close)):
per_close = (stock_close[i]-stock_close[i-1])/stock_close[i-1] #当日涨跌幅
per_backward = stock_close[i]/stock_close[i-1]-1 #当日和隔日的比例
increase.append(per_close)
ret_backward.append(per_backward)
# for i in range(0,len(stock_close)-1):
# per_forward = stock_close[i+1] / stock_close[i] - 1
# ret_forward.append(per_forward)
#ret_forward.append(0)
# if '104060600072' in csv:
# print(df)
df['percentage_close'] = increase
df['ret_backward'] = ret_backward
#df['ret_forward'] = ret_forward
#df = df.reset_index(inplace=True)
# if '104060600072' in csv:
# print(df)
df.to_csv("./dataset_30/{}".format(csv))
def map_to_range(value, min_val, max_val):
return (value - min_val) / (max_val - min_val) * 2 - 1
def y_vis(root_path):
# os.makedirs('./percentage_y_stocks/',exist_ok=True)
# for csv in tqdm.tqdm(os.listdir(root_path)):
# df = pd.read_csv(os.path.join(root_path,csv), skiprows=0)
# percentage_close = df['percentage_close']
# if len(percentage_close)<=100:
# y = df['y']
# ret = df['ret_backward']
# plt.figure(dpi=500,figsize=(20,10))
# plt.plot([i for i in range(len(y))], y, label='曲线1', color='blue')
# plt.plot([i for i in range(len(percentage_close))], percentage_close, label='曲线2', color='red')
# #plt.plot([i for i in range(len(ret))], ret, label='曲线3', color='green')
# #plt.show()
# plt.legend()
# plt.savefig('./percentage_y_stocks/{}'.format(csv.replace('.csv','.jpg')), dpi=300)
a_share_capital = []
for csv in tqdm.tqdm(os.listdir(root_path)):
df = pd.read_csv(os.path.join(root_path,csv), skiprows=0)
#a_share_capital.append(df['a_share_capital'].mean())
#df['y_scaled'] = df['y'].apply(lambda x: map_to_range(x, df['y'].min(), df['y'].max()))
df['Return'] = df['open'].shift(-1) / df['open'].shift(-2) - 1
print(df['next_open'][30:40].corr(df['y'][30:40]))
# nan = df.isnull().any().any()
#
# if nan:
# nan_locations = df.isna()
# print(csv)
# # 打印包含 NaN 值的行和列
# print(df[nan_locations.any(axis=1)])
#print(np.corrcoef(df1,df2))
#plt.show()
# print(max(a_share_capital),min(a_share_capital))
# # 生成一个从0到1万亿,以10亿为间隔的整数列表
# intervals = [0,10,100,1000,10000]
# intervals = [i * 10**8 for i in intervals]
# print(intervals)
#
# a_share_capital = pd.Series(a_share_capital)
# binned_series = pd.cut(a_share_capital, bins=intervals)
# print(binned_series.value_counts())
# binned_series.value_counts().plot(kind='bar', color='blue')
# # value_counts = a_share_capital.value_counts()
# # print(value_counts)
def y_percentage_corre(root_path):
os.makedirs('./heatmap_stocks/', exist_ok=True)
for csv in tqdm.tqdm(os.listdir(root_path)):
df = pd.read_csv(os.path.join(root_path,csv), skiprows=0)
plt.figure(dpi=500,figsize=(20,10))
new_df = pd.DataFrame(df, columns=['EMA_15', 'y','EMA_20','EMA_10'])
# 'volume','vwap','a_share_capital','total_capital','total_capital'\
# ,'float_a_share_capital','turnover','turnover_rate'])
# 计算DataFrame中所有列之间的相关系数矩阵
correlation_matrix = new_df.corr()
# 使用seaborn的heatmap函数绘制热力图
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
# 显示热力图
#plt.show()
plt.savefig('./heatmap_stocks/{}'.format(csv.replace('.csv', '.jpg')), dpi=300)
def calculate_base_indicators(root_path, target_path):
os.makedirs('./{}/'.format(target_path),exist_ok=True)
os.makedirs('./ema_plot', exist_ok=True)
for csv in tqdm.tqdm(os.listdir(root_path)):
data = pd.read_csv(os.path.join(root_path,csv), skiprows=0,index_col=0)
data = data.copy()
data.drop(columns=['y_scaled'], inplace=True)
#data.drop(columns=['y_normalized'], inplace=True)
data['y_zscore'] = zscore(data['y'])
# # 计算每日涨跌幅
# data['Return'] = data['close']/data['close'].shift(1)-1
# data.loc[0, 'Return'] = 0
#
# # 计算市值波动
# data['a_share_capital_percentage'] = data['a_share_capital'] / data['a_share_capital'].shift(1) - 1
# data.loc[0, 'a_share_capital_percentage'] = 0
#
# # 计算流通市值波动
# data['float_a_share_capital_percentage'] = data['float_a_share_capital'] / data['float_a_share_capital'].shift(1) - 1
# data.loc[0, 'float_a_share_capital_percentage'] = 0
#
# data['vwap_percentage'] = data['vwap'] / data['vwap'].shift(
# 1) - 1
# data.loc[0, 'vwap_percentage'] = 0
#
# data['next_open_percentage'] = data['next_open'] / data['next_open'].shift(
# 1) - 1
# data.loc[0, 'next_open_percentage'] = 0
#
# # 计算均线
# data['EMA_5'] = talib.EMA(data['close'].values, timeperiod=10)
# data['EMA_10'] = talib.EMA(data['close'].values, timeperiod=15)
# data['EMA_20'] = talib.EMA(data['close'].values, timeperiod=20)
#
# data['EMA_5'].fillna(method="bfill", inplace=True)
# data['EMA_10'].fillna(method="bfill", inplace=True)
# data['EMA_20'].fillna(method="bfill", inplace=True)
#
# #计算rsi
# data['rsi5'] = talib.RSI(data['close'], timeperiod=5)
# data['rsi10'] = talib.RSI(data['close'], timeperiod=10)
# data['rsi14'] = talib.RSI(data['close'], timeperiod=14)
#
# data['rsi5'].fillna(method="bfill", inplace=True)
# data['rsi10'].fillna(method="bfill", inplace=True)
# data['rsi14'].fillna(method="bfill", inplace=True)
#column1_30 = data['EMA_5'].iloc[29:70]
# 使用MinMaxScaler进行归一化
#scaler = MinMaxScaler()
#column1_30_normalized = scaler.fit_transform(column1_30.values.reshape(-1, 1))
#data['pseudo_y'] = data['close'].shift(-1) / data['close'].shift(-2)
# 将归一化后的结果转换为DataFrame
#data['EMA_5_30'] = pd.Series(column1_30_normalized.flatten())
#计算均线涨跌幅
# data['EMA_5_trend'] = data['EMA_5']/data['EMA_5'].shift(1)-1
# data['EMA_5_trend'].fillna(0, inplace=True)
#
#
# data['EMA_10_trend'] = data['EMA_10']/data['EMA_10'].shift(1)-1
# data['EMA_10_trend'].fillna(0, inplace=True)
#
# data['EMA_20_trend'] = data['EMA_20']/data['EMA_20'].shift(1)-1
# data['EMA_20_trend'].fillna(0, inplace=True)
# #计算pseudo_y
# data['pseudo_y'] = data['open']/data['next_open']-1
data.to_csv("./{}/{}".format(target_path, csv))
# plt.figure(dpi=200)
# plt.plot([i for i in range(len(data['EMA_10']))], data['EMA_10'], label='曲线1', color='blue')
# fig, axes = plt.subplots(4, 1)
# axes[0].plot(data['EMA_5'].iloc[29:40], label='Column1')
# axes[1].plot(data['EMA_5_trend'].iloc[29:40], label='Column2')
# axes[2].plot(data['close'].iloc[29:40], label='Column2')
# axes[3].plot(data['a_share_capital'].iloc[29:40], label='Column1')
#
# #axes[4].plot(data['pseudo_y'].iloc[29:70], label='Column2')
# #
# correlation = data['a_share_capital'].corr(data['close'])
# print(correlation)
#plt.savefig('./ema_plot/{}'.format(csv.replace('.csv', '.jpg')))
# print(data['EMA_5_trend'])
#print(data['rsi6']/100)
#print(data['EMA_10'])
#fig, axes = plt.subplots(3, 1)
#data[['close', 'EMA_20']].plot(ax=axes[0], grid=True, title='code')
#data[['rsi6', 'rsi14']].plot(ax=axes[1], grid=True)
#data[['y']].plot(ax=axes[2], grid=True)
# plt.figure(dpi=200)
# plt.plot([i for i in range(len(data['EMA_10']))], data['EMA_10'], label='曲线1', color='blue')
# plt.plot([i for i in range(len(data['close']))], data['close'], label='曲线2', color='red')
# fig, axs = plt.subplots(2, 1)
#
# # 在第一个子图上绘制正弦波
# axs[0].plot([i for i in range(len(data['ema']))], data['ema'] ,label='曲线1', color='blue')
# axs[0].set_title('Sine Wave')
# axs[0].set_xlabel('x')
# axs[0].set_ylabel('sin(x)')
#
# # 在第二个子图上绘制余弦波
# axs[1].plot([i for i in range(len(data['close']))], data['close'], label='曲线2', color='red')
# axs[1].set_xlabel('x')
#os.makedirs('./dataset_30_indicators/',exist_ok=True)
#print(data)
#data.to_csv("./{}/{}".format(target_path,csv))
#plt.savefig('./ema_plot/{}'.format(csv.replace('.csv', '.jpg')), dpi=300)
#def cal_ema(root_path, window=30):
def calculate_return(root_path):
#os.makedirs('./ema_plot/',exist_ok=True)
for csv in tqdm.tqdm(os.listdir(root_path)):
data = pd.read_csv(os.path.join(root_path,csv), skiprows=0,index_col=0)
data = data.copy()
return_1 = []
return_2 = []
return_2_1 = []
close = data['close'].values
for i in range(len(close)-1):
daily_return = (close[i+1]/close[i])-1
return_1.append(daily_return)
return_1.append(return_1[-1])
for i in range(len(close)-2):
daily_return = (close[i+2]/close[i])-1
return_2.append(daily_return)
return_2.append(return_2[-1])
return_2.append(return_2[-1])
for i in range(len(close)-2):
daily_return = (close[i+2]/close[i+1])-1
return_2_1.append(daily_return)
return_2_1.append(return_2_1[-1])
return_2_1.append(return_2_1[-1])
data['return_1'] = return_1
data['return_2'] = return_2
data['return_2_1'] = return_2_1
#bodong率
print(csv,data)
#data.to_csv("./dataset_30_indicators/{}".format(csv))
def check_date_continuity(dates, max_gap=10):
"""
检查日期列表是否连续,最大差值不能超过指定天数。
参数:
dates (pd.Series): 日期序列。
max_gap (int): 最大允许的日期间隔(以天为单位)。
返回:
bool: 如果日期连续,则为 True,否则为 False。
"""
# 计算日期差
date_diffs = dates.diff().dt.days
print(list(date_diffs))
for i in list(date_diffs)[1:]:
if i >10:
#print(list(date_diffs).index(i))
print(dates[list(date_diffs).index(i)-1],dates[list(date_diffs).index(i)],dates[list(date_diffs).index(i)+1])
# 检查是否存在超过最大间隔的日期差
return not (date_diffs[1:] > max_gap).any()
def dataset_clean():
root_path = './dataset_useful_case_v0/'
#os.makedirs('./dataset',exist_ok=True)
os.makedirs('./dataset_useful_case_v0_remove_y0',exist_ok=True)
os.makedirs('./dataset_useful_case_v0_y0',exist_ok=True)
i=0
for csv in tqdm.tqdm(os.listdir(root_path)):
#if '104070300302' in csv:
df = pd.read_csv(os.path.join(root_path,csv), skiprows=0,index_col=0,dtype={'y': float})
#print(df['y'])
zero_count = (df['y'] == 0).sum()
# non_zero_df = df[df['y'] !=0]
# zero_df = df[df['y'] == 0]
# zero_df.reset_index(drop=True, inplace=True)
#non_zero_df.reset_index(drop=True, inplace=True)
# if zero_df.empty:
# non_zero_df.to_csv("./dataset_30_non_zero/{}".format(csv))
# else:
# non_zero_df.to_csv("./dataset_30_non_zero/{}".format(csv))
# zero_df.to_csv("./dataset_30_zero/{}".format(csv))
if zero_count>0:
non_zero_df = df[df['y'] != 0]
non_zero_df.to_csv("./dataset_useful_case_v0_remove_y0/{}".format(csv))
zero_df = df[df['y'] == 0]
zero_df.to_csv("./dataset_useful_case_v0_y0/{}".format(csv))
else:
shutil.copyfile(os.path.join(root_path, csv), os.path.join('./dataset_useful_case_v0_remove_y0', csv))
print(len(os.listdir('dataset_useful_case_v0_remove_y0')),len(os.listdir('dataset_useful_case_v0_y0')))
# shutil.copyfile(os.path.join(root_path,csv),os.path.join('./dataset_zero',csv))
# else:
# shutil.copyfile(os.path.join(root_path,csv),os.path.join('./dataset_non_zero',csv))
def process_y(root_path):
for csv in tqdm.tqdm(os.listdir(root_path)):
df = pd.read_csv(os.path.join(root_path,csv), skiprows=0,index_col=0)
#df['y_zscore'] = zscore(df['y'])
#价格
# scaler = StandardScaler()
# df['A_zscore'] = scaler.fit_transform(df[['A']])
# 将 Z-score 归一化到 -1 到 1
df['y_normalized'] = 2 * (df['y_zscore'] - df['y_zscore'].min()) / (
df['y_zscore'].max() - df['y_zscore'].min()) - 1
df.to_csv("./dataset_train_v0/{}".format(csv))
def calculate_tailb_indicators(root_path):
for csv in tqdm.tqdm(os.listdir(root_path)):
df = pd.read_csv(os.path.join(root_path,csv), skiprows=0,index_col=0)
obv = talib.OBV(df['close'], df['volume']) #
natrPrice = talib.NATR(df['high'], df['low'], df['close'], timeperiod=10)
def split_train_test(root_path):
os.makedirs('./dataset_train_v1',exist_ok=True)
os.makedirs('./dataset_test_v1',exist_ok=True)
for csv in tqdm.tqdm(os.listdir(root_path)):
df = pd.read_csv(os.path.join(root_path,csv), skiprows=0,index_col=0)
day_num = df.shape[0]
#print(day_num)
if 100/day_num <=0.3:
#last_100_rows = df.tail(100)
remaining_rows = df.iloc[:-100]
df.to_csv("./dataset_test_v1/{}".format(csv))
remaining_rows.to_csv("./dataset_train_v1/{}".format(csv))
else:
df.to_csv("./dataset_train_v1/{}".format(csv))
print(len(os.listdir('./dataset_train_v1')),len(os.listdir('dataset_test_v1')))
# intervals = [0, 10, 100, 1000, 10000]
# intervals = [i * 10 ** 8 for i in intervals]
# a_share_capital = []
# for stock in case:
# a_share_capital.append(stock['a_share_capital'].mean())
# a_share_capital = pd.Series(a_share_capital)
# binned_series = pd.cut(a_share_capital, bins=intervals)
# print(binned_series.value_counts())
# binned_series.value_counts().plot(kind='bar', color='blue')
# plt.show()
# print(len(case),len(os.listdir(root_path)))
#shutil.copyfile(os.path.join(root_path, csv), os.path.join('./dataset_30', csv))
if __name__ == '__main__':
root_path = './dataset'
os.makedirs('./dataset_abandon',exist_ok=True)
os.makedirs('./dataset_out_of_domain',exist_ok=True)
os.makedirs('./dataset_useful_case',exist_ok=True)
#process_y('./dataset_test_v0')
# for csv in tqdm.tqdm(os.listdir('./dataset_non_zero')):
# df = pd.read_csv(os.path.join(root_path,csv), skiprows=0,index_col=0)
# day_num = df.shape[0]
# if day_num<30:
# shutil.move(os.path.join('./dataset_non_zero',csv),os.path.join('./dataset_abandon',csv))
# print(len(os.listdir('./dataset_abandon')),len(os.listdir('./dataset_non_zero')))
#date_num('./dataset')
#percentage_up_down(root_path)
#y_vis('./dataset_train_v0')
#process_y('./dataset_test_v0')
#y_percentage_corre(root_path)
#calculate_base_indicators(root_path='./dataset_test_v0',target_path = './dataset_test_v0')
#calculate_return(root_path)
#dataset_clean()
#print(len(os.listdir('./dataset_non_zero')),len(os.listdir('./dataset_zero')),len(os.listdir('./dataset')))
# print(len(os.listdir('./dataset_temp')))
split_train_test('./dataset_useful_case_v0_remove_y0')
#y_vis('./dataset_test_v0')
# os.makedirs('./dataset_test_v0_temp', exist_ok=True)
# for csv in tqdm.tqdm(os.listdir('./dataset_test_v0')):
# df1 = pd.read_csv(os.path.join('./dataset_test_v0',csv),index_col=0)
# df2 = pd.read_csv(os.path.join('./dataset_train_v0',csv),index_col=0)
#
# # 拼接两个 DataFrame
# merged_df = pd.concat([df2, df1], ignore_index=False)
#
# # 保存拼接后的 DataFrame 到新的 CSV 文件
#
# merged_df.to_csv('./dataset_test_v0_temp/{}'.format(csv))
# path = 'daily_data.csv' # 数据存放路径
# df = pd.read_csv(path, skiprows=0, parse_dates=['date'])
# stocks_id = list(df['instrument_id'].unique())
# os.makedirs('./dataset', exist_ok=True)
# print(len(stocks_id))
# for id in tqdm.tqdm(stocks_id):
# stock = {}
# stock = df.loc[(df['instrument_id'] == id)]
# # print(stock.reset_index(drop=True))
# stock.reset_index(drop=True, inplace=True)
# stock.to_csv("./dataset/{}.csv".format(str(id)))
# print(len(os.listdir('./dataset')))