-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
250 lines (207 loc) · 9.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import pandas as pd
from dataset import SlidingWindowDataset,SlidingWindowDataset_test
from models.transformer import TransformerModel,TransformerModel_NAT,TransformerModel_cls_reg,TransformerModel_gru,TransformerModel_reg
import numpy as np
import logging
from scipy.stats import zscore
from losses import weighted_mse_loss
import matplotlib.pyplot as plt
from utils import val,val_NAT
from tensorboardX import SummaryWriter
def logging_system(log_file):
logger = logging.getLogger("training")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('[%(asctime)s - %(name)s - %(filename)s:%(lineno)d - %(levelname)s] %(message)s')
sysh = logging.StreamHandler()
sysh.setFormatter(formatter)
fh = logging.FileHandler(log_file, 'w')
fh.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(sysh)
return logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train(model,model_path,stock_feature):
batch_size = 64
num_epochs = 50
folder_path = './dataset_train_v0'
os.makedirs(model_path, exist_ok=True)
window_size = 25
# 创建数据集和数据加载器
dataset = SlidingWindowDataset(folder_path, window_size, batch_size,stock_feature,is_training=True)
train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
criterion_1 = nn.MSELoss()
#optimizer = optim.Adam(model.parameters(), lr=0.0001)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.001)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=2, verbose=True)
# 训练模型
for epoch in range(num_epochs):
model.train()
for i, (src, tgt) in enumerate(train_dataloader):
#print(src.size(), tgt.size())
optimizer.zero_grad()
src = src.to(device) #N d L
tgt = tgt.to(device) #N d L
#print(src.size(), tgt.size())
#start = torch.zeros((tgt.shape[0],tgt.shape[1],1)).to(device)
output = model(src,src) # L N d
#output = output.permute(1, 2, 0)
#loss = weighted_mse_loss(output, tgt[:,:,1:25],weight=0.6)
loss = criterion_1(output, tgt[:,:,-1].unsqueeze(1))
loss.backward()
optimizer.step()
if (i + 1) % 10 == 0:
logger.info(
f'Epoch [{epoch + 1}/{num_epochs}], Iteration [{i + 1}/{len(train_dataloader)}], Loss: {loss.item():.4f}')
print(output[0,:,:],tgt[0,:,-1])
val_loss = val(model,logger,model_path=None,training=True,plot_save_path = model_path,device=device)
scheduler.step(val_loss)
logger.info(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
torch.save(model.state_dict(), './{}/transformer_epoch{}_{:.4f}.pth'.format(model_path,str(epoch), val_loss))
# 保存模型
def train_NAT(model,model_path,stock_feature):
batch_size = 64
num_epochs = 30
folder_path = './dataset_train_v0'
os.makedirs(model_path, exist_ok=True)
window_size = 20
log_path = os.path.join(model_path, 'log')
os.makedirs(log_path, exist_ok=True)
#writer = SummaryWriter(log_path)
# 创建数据集和数据加载器
dataset = SlidingWindowDataset(folder_path, window_size, batch_size,stock_feature,is_training=True)
train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
criterion_1 = nn.MSELoss()
#optimizer = optim.Adam(model.parameters(), lr=0.0001)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.001)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=2, verbose=True,min_lr=0.00001,)
# 训练模型
for epoch in range(num_epochs):
model.train()
for i, (src, tgt) in enumerate(train_dataloader):
#print(src.size(), tgt.size())
optimizer.zero_grad()
src = src.to(device) #N d L
tgt = tgt.to(device) #N d L
#print(src.size(), tgt.size())
#start = torch.zeros((tgt.shape[0],tgt.shape[1],1)).to(device)
output = model(src,tgt[:,:,:-1]) # L N d
#output = output.permute(0, 2, 1)
#loss = weighted_mse_loss(output, tgt[:,:,1:25],weight=0.6)
loss = criterion_1(output, tgt[:,:,-1])
#writer.add_scalar('training loss', loss, epoch * len(train_dataloader) + i)
#loss = torch.sqrt(loss)
loss.backward()
#nn.utils.clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()
if (i + 1) % 20 == 0:
logger.info(
f'Epoch [{epoch + 1}/{num_epochs}], Iteration [{i + 1}/{len(train_dataloader)}], Loss: {loss.item():.5f}')
print(output[0,:].item(),tgt[0,:,-1].item())
print(output[1, :].item(), tgt[1, :, -1].item())
val_loss = val_NAT(model,logger,epoch,model_path=None,training=True,plot_save_path = model_path,device=device)
scheduler.step(val_loss)
logger.info(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
torch.save(model.state_dict(), './{}/transformer_epoch{}_{:.4f}.pth'.format(model_path,str(epoch), val_loss))
# 加载模型
# 预测函数
def test(model,model_path):
model.load_state_dict(torch.load(model_path))
model.eval()
model.to(device)
criterion_1 = nn.MSELoss()
criterion_2 = nn.L1Loss()
test_path = './dataset_test_v0'
test_dataset = SlidingWindowDataset(test_path, 30, None,None,is_training=False)
for csv in tqdm.tqdm(os.listdir(test_path)):
if '104070000666.csv' in csv:
csc_result = []
corre_result = []
# if '104060600017' in csv:
df = pd.read_csv(os.path.join(test_path, csv), index_col=0)
gt_y = df['y_scaled'].copy().tail(100).reset_index(drop=True)
df = df.tail(129).reset_index(drop=True)
#df.loc[29:, 'y_scaled'] = 0
# print(df.loc[28,'y'],df.loc[29,'y'])
for i in range(len(df) - 30 + 1):
if i==28:
for j in range(30):
if j==0:
out = [0]
stocks_feature, y = test_dataset.test_preprocess_v1(df[i:i + 30])
# print(stocks_feature.shape, y.shape)
src = torch.tensor(stocks_feature, dtype=torch.float32).unsqueeze(0).to(device)
tgt = torch.tensor(out, dtype=torch.float32).unsqueeze(0).to(device)
start = torch.zeros((tgt.shape[0], 1)).to(device) #N L
output = model.predict(src, torch.cat((start,tgt[:,:-1]),dim=-1), day_num=29)
print(output[0, :, :].item(),y[-1],gt_y[j])
out.append(output[-1, :, :].item())
#df.loc[i + 29, 'y_scaled'] = output[-1, :, :].item()
#print(len(df['y'].tail(100)),len(gt_y.tail(100)))
print(df['y_scaled'].tail(100),gt_y.tail(100))
predict = torch.tensor(df['y_scaled'].tail(100).values, dtype=torch.float32)
gt = torch.tensor(gt_y.values, dtype=torch.float32)
loss = criterion_1(predict, gt)
print(loss.item())
correlation_matrix = torch.corrcoef(torch.stack((predict, gt)))
corre_result.append(correlation_matrix[1, 0].item())
# print(correlation_matrix)
csc_result.append(loss.item())
logger.info('val loss : {:.4f}'.format(sum(csc_result) / len(csc_result)))
logger.info('correlation : {:.4f}'.format(sum(corre_result) / len(corre_result)))
return sum(csc_result) / len(csc_result)
#return sum(csc_result) / len(csc_result)
if __name__ == '__main__':
input_dim = 19 # 假设输入包含开盘价、最高价、最低价、收盘价和成交量
output_dim = 1 # 输出是收益率
d_model = 256
nhead = 8
num_encoder_layers = 2
num_decoder_layers = 2
dim_feedforward = 512
dropout = 0.2
sequence_length = 10
batch_size = 32
num_epochs = 50
stock_feature = {
'open':[],
'close':[],
'next_open':[],
'EMA_5':[],
'EMA_10':[],
'EMA_20':[],
'a_share_capital':[],
'a_share_capital_percentage': [],
'float_a_share_capital':[],
'float_a_share_capital_percentage': [],
'rsi5':[],
'rsi10': [],
'rsi14': [],
'Return': [],
'EMA_5_trend': [],
'EMA_10_trend': [],
'EMA_20_trend': [],
'pseudo_y': [],
'volume': [],
'turnover_rate': [],
'turnover': [],
'type': [],
'y':[],
#'y_scaled': [],
'y_zscore': [],
#'y_normalized':[]
}
global logger
logger = logging_system('training.log')
# model = TransformerModel(input_dim, output_dim, d_model, nhead, num_encoder_layers, num_decoder_layers,
# dim_feedforward, dropout).to(device)
model = TransformerModel_reg(input_dim, output_dim, d_model, nhead, num_encoder_layers, num_decoder_layers,
dim_feedforward, dropout).to(device)
train_NAT(model,'./model_3layer_8head_19feature_v1/',stock_feature)
#test(model,model_path='./model_6layer_13feature/transformer_epoch1_0.0492.pth')
#loss = val(model,model_path='./model_6layer_13feature/transformer_epoch0_0.0004.pth',training=False)