-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_phone2vism.py
309 lines (262 loc) · 13.4 KB
/
train_phone2vism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import torch
import argparse
import os
import logging
from torch.utils.tensorboard import SummaryWriter
import time
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.utils.data import DataLoader
import tqdm
from torch.utils.data.distributed import DistributedSampler
import torch.nn.functional as F
torch.distributed.init_process_group(backend="nccl")
local_rank = torch.distributed.get_rank()
print('local_rank',local_rank)
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
phone_set_40 = ['SIL','AA', 'AE', 'AH', 'AO', 'AW', 'AY', 'B', 'CH', 'D', 'DH', 'EH', 'ER', 'EY', 'F', 'G', 'HH', 'IH', 'IY', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OY', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UW', 'V', 'W', 'Y', 'Z', 'ZH']
phone2vism_dict = {'sp': 'SIL', 'sp_sil': 'SIL', 'sil': 'SIL', 'SIL': 'SIL', 'spn': 'SIL', 'AA': 'AA', 'AH': 'AA', 'AO': 'AA', 'AW': 'AA', 'HH': 'AA', 'AE': 'AE', \
'EY': 'AE', 'EH': 'AE', 'ER': 'AE', 'AY': 'AE', 'M': 'MBP', 'B': 'MBP', 'P': 'MBP', 'F': 'FV', 'V': 'FV', 'TH': 'TH', 'D': 'TH', 'DH': 'TH', 'T': \
'TH', 'L': 'TH', 'G': 'TH', 'K': 'TH', 'S': 'S', 'Z': 'S', 'IY': 'S', 'IH': 'S', 'Y': 'S', 'UW': 'UW', 'UH': 'UW', 'W': 'UW', 'SH': 'SH', 'CH': \
'SH', 'JH': 'SH', 'ZH': 'SH', 'R': 'SH', 'OW': 'OW', 'OY': 'OW', 'N': 'NG', 'NG': 'NG'}
frame_list = { "SIL":0,"AA": 1, "OW": 2, "AE": 3, "S": 4, "UW": 5, "FV": 6, "MBP": 7, "SH": 8, "NG": 9, "TH": 10}
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.queue = np.zeros(shape=[100, ])
self.index = 0
self.queue_avg = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
self.queue[self.index % 100] = self.val
self.index += 1
self.queue_avg = np.mean(self.queue)
def check_parameters(model):
# check the parameters
for param in model.parameters():
print(param.shape, param.requires_grad)
def load_checkpoint(model):
start_epoch = 0
best_loss = 1e6
if args.pretrained_model:
if not os.path.isfile(args.pretrained_model):
logger.info("=> no checkpoint found at '{}'".format(args.pretrained_model))
return
logger.info('=> load checkpoint {}'.format(args.pretrained_model))
checkpoint = torch.load(args.pretrained_model)
model_dict = model.state_dict()
#print(predict.keys())
#print(checkpoint.keys())
pretrained_dict = {k.replace('module.',''):v for k, v in checkpoint['state_dict'].items() }
#check_parameters(model)
model_dict.update(pretrained_dict)
#print(pretrained_dict.keys())
#print(model_dict)
if 'epoch' in checkpoint.keys():
start_epoch = checkpoint['epoch']
if 'loss' in checkpoint.keys():
best_loss = checkpoint['loss']
if 'state_dict' in checkpoint.keys():
model.load_state_dict(model_dict)
# if 'network' in checkpoint.keys():
# model.load_state_dict(checkpoint['network'])
logger.info(
'=> loaded checkpoint {} (epoch {}) (best_loss {})'.format(args.pretrained_model, start_epoch, best_loss))
return start_epoch, best_loss
def save_checkpoint(model, epoch, loss, best_loss):
os.makedirs(args.save_path, exist_ok=True)
model_path = os.path.join(args.save_path, 'ckpt_epoch%d.pth' % epoch)
# torch.save({
# 'epoch': epoch + 1,
# 'loss': loss,
# 'state_dict': model.state_dict(), }, model_path)
model_path = os.path.join(args.save_path, 'best_ckpt.pth')
if loss < best_loss or not os.path.exists(model_path):
if torch.distributed.get_rank()==0:
best_loss = loss
torch.save({
'epoch': epoch + 1,
'loss': best_loss,
'state_dict': model.state_dict()}, model_path)
return best_loss
def logging_system():
os.makedirs(args.save_path, exist_ok=True)
logger = logging.getLogger("training")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('[%(asctime)s - %(name)s - %(filename)s:%(lineno)d - %(levelname)s] %(message)s')
sysh = logging.StreamHandler()
sysh.setFormatter(formatter)
fh = logging.FileHandler(os.path.join(args.save_path, args.logger), 'w')
fh.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(sysh)
return logger
def train(train_loader, model, criterion, optimizer, epoch, log_writer):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
logger.info("Training....")
model.train()
end = time.time()
for iter_batch,(waveform, y_visms) in enumerate(train_loader):
data_time.update(time.time() - end)
optimizer.zero_grad()
feature_batch = waveform.cuda().long()
y_vism_batch = y_visms.cuda().float()
output = model(feature_batch,hidden=None)
# if output.size(1)<y_vism_batch.size(1):
# diff = y_vism_batch.size(1)-output.size(1)
# output = F.pad(output,(0,0,0,diff))
# else:
# diff = output.size(1) - y_vism_batch.size(1)
# y_vism_batch = F.pad(y_vism_batch, (0, 0, 0, diff))
#print(output.shape,y_vism_batch.shape,'xxxxxxxxxxx')
loss = criterion(output , y_vism_batch)
log_writer.add_scalar('Train_loss', loss, epoch * len(train_loader) + iter_batch)
#print('Train_loss', loss)
losses.update(loss.item(), feature_batch.size(0))
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if iter_batch % args.log_freq == 0:
lr = args.learning_rate * (0.1 ** (int(epoch / args.lr_decay_step)))
logger.info('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} [{loss.queue_avg:.4f},{loss.avg:.4f}]\t'
'{lr:.4f}'.format(
epoch, iter_batch, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses,lr=lr))
def val(val_loader, model, criterion, log_writer, epoch):
losses = AverageMeter()
logger.info("valing....")
model.eval()
for iter_batch,(waveform, y_visms) in enumerate(val_loader):
feature_batch = waveform.cuda().long()
y_vism_batch = y_visms.cuda().float()
# print(img_batch.shape, label_batch.shape)
output = model(feature_batch)
# if output.size(1) < y_vism_batch.size(1):
# diff = y_vism_batch.size(1) - output.size(1)
# output = F.pad(output, (0, 0, 0, diff))
# else:
# diff = output.size(1) - y_vism_batch.size(1)
# y_vism_batch = F.pad(y_vism_batch, (0, 0, 0, diff))
loss = criterion(output , y_vism_batch)
losses.update(loss.item(), feature_batch.size(0))
logger.info('Loss {loss.avg:.8f}\t'.format(loss=losses,))
if log_writer != None:
log_writer.add_scalar('val_loss', losses.avg, epoch)
return losses.avg
def adjust_learning_rate(optimizer, epoch, log_writer):
lr = args.learning_rate * (0.1 ** (int(epoch / args.lr_decay_step)))
# lr = args.learning_rate * (0.1**(epoch/10))
lr = args.min_lr if lr <= args.min_lr else lr
if epoch % (args.lr_decay_step) == 0:
for param_group in optimizer.param_groups:
param_group['lr'] = lr
logger.info('learning rate: %f' % lr)
log_writer.add_scalar('learning_rate', lr, epoch)
def main():
from dataset.phone_dataset import BatchPhoneDataset as dataset
from models.phone2vism import TCN_GRU_res_jap,TCN_GRU_res_kor
train_dst = dataset(audio_list_files=args.train_list)
train_sampler = DistributedSampler(train_dst)
train_loader = DataLoader(train_dst, batch_size=args.batch_size, shuffle=False, num_workers=args.workers,
pin_memory=True,sampler=train_sampler,collate_fn=train_dst.collate_fill)
val_dst = dataset(audio_list_files=args.train_list)
test_sampler = DistributedSampler(val_dst)
val_loader = DataLoader(val_dst, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=False,sampler=test_sampler,collate_fn=train_dst.collate_fill)
start_epoch = 0
best_loss = 1e6
model = TCN_GRU_res_jap()
# for name, param in model.named_parameters():
# if 'wav_model' in name:
# param.requires_grad=False
start_epoch, best_loss = load_checkpoint(model)
#criterion = nn.MSELoss()
#criterion = nn.SmoothL1Loss(reduction='mean')
criterion = nn.L1Loss()
# if torch.cuda.is_available():
# model = nn.DataParallel(model).cuda()
# criterion = criterion.cuda()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = torch.nn.parallel.DistributedDataParallel(model.cuda(),
device_ids=[local_rank],
output_device=local_rank,find_unused_parameters=True)
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=0.01)
# optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.learning_rate,
# momentum=args.momentum,
# weight_decay=args.weight_decay)
log_writer = SummaryWriter(os.path.join(args.save_path, 'Training_log'))
# loss = val(val_loader, model, criterion, None, None)
for epoch in range(start_epoch, start_epoch + args.epochs):
adjust_learning_rate(optimizer, epoch, log_writer)
train(train_loader, model, criterion, optimizer, epoch, log_writer)
loss = val(val_loader, model, criterion, log_writer, epoch)
best_loss = save_checkpoint(model, epoch, loss, best_loss)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='train scene phone2vism')
parser.add_argument('--window_size', default=300, type=int, help='input sequence len')
parser.add_argument('--gpus', default='0', type=str, help='identify gpus')
parser.add_argument('--workers', '-j', default=4, type=int,
help='number of data loading workers')
parser.add_argument('--epochs', default=50, type=int,
help='number of epochs to run')
parser.add_argument('--batch_size', '-b', default=128, type=int,
help='mini batch')
parser.add_argument('--learning_rate', '-lr', default=0.001, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum')
parser.add_argument('--weight_decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--logger', default='training.log', type=str,
help='log file')
parser.add_argument('--log_freq', '-l', default=10, type=int,
help='print log')
parser.add_argument('--train_list', default="/mnt/kaiwu-group-z3/cliffordqiu/Dataset/jvs_ver1_train.txt", type=str,
help='path to training list')
parser.add_argument('--val_list', default="/mnt/kaiwu-group-z3/cliffordqiu/Dataset/jvs_ver1_test.txt", type=str,
help='path to validation list')
parser.add_argument('--train_rootdir', default='', type=str,
help='the rootdir of train dataset')
parser.add_argument('--val_rootdir', default='', type=str,
help='the rootdir of validation dataset')
parser.add_argument('--save_path', default='./model_jap_phone2vism_align_revise/', type=str,
help='path to save checkpoint and log')
parser.add_argument('--pretrained_model', default='', type=str,
help='path to pretrained checkpoint')
parser.add_argument('--phones_num', type=int, default=40, help='num phones')
parser.add_argument('--vism_num', type=int, default=10, help='num classes')
parser.add_argument('--lr_decay_step', type=int, default=10, help='reduce the learning rate every step')
parser.add_argument('--min_lr', type=float, default=1e-6, help='the min learning rate')
parser.add_argument('--nproc_per_node', type=int, default=6, help='')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--master_port', type=int, default=0)
global args, logger, DCFNet
args = parser.parse_args()
logger = logging_system()
logger.info(vars(args))
#os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
# if torch.cuda.device_count() > 1:
# logger.info('%d GPU found' % torch.cuda.device_count())
main()