-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFYS2130_damped_oscillator_solvers.py
162 lines (140 loc) · 6.07 KB
/
FYS2130_damped_oscillator_solvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import matplotlib.pyplot as plt
from numba import jit
import numba as nb
import numpy as np
@jit(cache = True)
def runge_kutta_4(x_0, v_0, m, k, b, T, dt):
'''
Numerically integrates a second-order differential spring equation by
using a 4th-Order Runge-Kutta integrator
'''
t = np.arange(0, T, dt)
x, v = np.zeros_like(t), np.zeros_like(t)
x[0] = x_0
v[0] = v_0
for n, (x_1, v_1) in enumerate(zip(x[:-1], v[:-1])):
a_1 = -(k*x_1 + b*v_1)/m
x_2 = x_1 + v_1*(dt/2.)
v_2 = v_1 + a_1*(dt/2.)
a_2 = -(k*x_2 + b*v_2)/m
x_3 = x_1 + v_2*(dt/2.)
v_3 = v_1 + a_2*(dt/2.)
a_3 = -(k*x_3 + b*v_3)/m
x_4 = x_1 + v_3*dt
v_4 = v_1 + a_3*dt
a_4 = -(k*x_4 + b*v_4)/m
a_avg = (a_1 + 2*a_2 + 2*a_3 + a_4)/6.
v_avg = (v_1 + 2*v_2 + 2*v_3 + v_4)/6.
v[n + 1] = v_1 + a_avg*dt
x[n + 1] = x_1 + v_avg*dt
return t, x, v
def analytical(x_i, v_i, t_ix, t_iv, m, k, b, ret_constants = False):
'''
<x_i> is the initial condition for x, <v_i> is the initial condition for
v,and <t_ix> is the time at which <x_i> occurs, while <t_iv> is the time
at which <v_i> occurs
<m> is the object mass in [kg], <k> is the spring constant in [N/m] and
<b> is the friction constant in [kg/s]
This will return a usable function, or if <ret_constants> is True, then
it will return a string containing the final equation
'''
gamma = b/(2*m)
omega_0 = np.sqrt(k/m)
if abs(omega_0 - gamma) < 1e-15:
A = x_i*np.exp(gamma*t_ix)
if ret_constants is True:
string = '\nConstants:\n\n'
string += '\tA = {},\tγ = {}'.format(A, gamma)
string += '\n\nSolution of the form:'
string += '\n\n\tA·exp(-γt)'
string += '\n\nParticular Solution:'
string += '\n\n\t{:.3g}·exp(-{:.3g}t)'\
.format(A, gamma)
string += '\n\nPython Numpy Formula:'
string += '\n\n\tA*np.exp(-gamma*t)'
string += '\n\nGeneral LaTEX Formula:'
string += '\n\n\t'
string += r'Ae^{-\gamma t}'
string += '\n\nParticular LaTEX Formula'
string += '\n\n\t'
string += '{:.3g}e^{{-{:.3g} t}}'.format(A, gamma)
string += '\n'
return string
else:
def f(t):
return A*np.exp(-gamma*t)
return f
elif omega_0 > gamma:
omega_hat = np.sqrt(omega_0**2 - gamma**2)
y = (-v_i/(omega_hat*x_i))*np.exp(gamma*(t_iv - t_ix))
a = np.sin(omega_hat*t_ix)
b = np.cos(omega_hat*t_ix)
c = np.cos(omega_hat*t_iv)
d = np.sin(omega_hat*t_iv)
phi = np.arctan2(a - c*y, b + d*y)
A = x_i*np.exp(gamma*t_ix)/np.cos(omega_hat*t_ix + phi)
if ret_constants is True:
string = '\nConstants:\n\n'
string += '\tA = {},\tϕ = {}\n\n\tγ = {},\t'.format(A, phi, gamma)
string += '\u03c9\u0302 = {}'.format(omega_hat)
string += '\n\nSolution of the form:'
string += '\n\n\tA·exp(-γt)·cos(\u03c9\u0302t + ϕ)'
string += '\n\nParticular Solution:'
string += '\n\n\t{:.3g}·exp(-{:.3g}t)·cos({:.3g}t + {:.3g})'\
.format(A, gamma, omega_hat, phi)
string += '\n\nPython Numpy Formula:'
string += '\n\n\tA*np.exp(-gamma*t)*np.cos(omega_hat*t + phi)'
string += '\n\nGeneral LaTEX Formula:'
string += '\n\n\t'
string += r'Ae^{-\gamma t}\cos\left(\hat{\omega}t+\phi\right)'
string += '\n\nParticular LaTEX Formula'
string += '\n\n\t'
string += '{:.3g}e^{{-{:.3g} t}}\cos\left({:.3g}t+{:.3g}\\right)'\
.format(A, gamma, omega_hat, phi)
string += '\n'
return string
else:
def f(t):
return A*np.exp(-gamma*t)*np.cos(omega_hat*t + phi)
return f
elif omega_0 < gamma:
a = -gamma + np.sqrt(gamma**2 - omega_0**2)
b = -gamma - np.sqrt(gamma**2 - omega_0**2)
c = np.exp(a*t_ix) - a*np.exp(a*t_iv)
d = np.exp(b*t_ix) - b*np.exp(b*t_iv)
A = (x_i - (((x_i - v_i)/(d))*np.exp(b*t_ix)))/\
(np.exp(a*t_ix) - ((c/d)*np.exp(b*t_ix)))
B = (x_i - v_i - c*A)/d
if ret_constants is True:
sqrt_oh = '√(γ² - \u03c9\u2080\u00B2)'
sqrt_oh_py = 'np.sqrt(gamma**2 - omega_0**2)'
sqrt_oh_eval = np.sqrt(gamma**2 - omega_0**2)
string = '\nConstants:\n\n'
string += '\tA = {},\tB = {}\n\n\tγ = {},\t'.format(A, B, gamma)
string += '\u03c9\u2080 = {}'.format(omega_0)
string += '\n\nSolution of the form:'
string += '\n\n\tA·exp(-γ + {}) + B·exp(-γ - {})'.format(sqrt_oh, sqrt_oh)
string += '\n\nParticular Solution:'
string += '\n\n\t{:.3g}·exp({:.3g}t) + '.format(A, sqrt_oh_eval - gamma)
string += '{:.3g}·exp({:.3g}t)'.format(B, sqrt_oh_eval + gamma)
string += '\n\nPython Numpy Formula:'
string += '\n\n\tA*np.exp(-gamma + {})'.format(sqrt_oh_py)
string += '\n\t\t\t\t+'
string += '\n\tB*np.exp(-gamma - {})'.format(sqrt_oh_py)
string += '\n\nGeneral LaTEX Formula:'
string += '\n\n\t'
string += r'Ae^{\left( -\gamma + \sqrt{\gamma^2-\omega_0^2} \right)t}'
string += r'+Be^{\left( -\gamma - \sqrt{\gamma^2-\omega_0^2} \right)t}'
string += '\n\nParticular LaTEX Formula'
string += '\n\n\t'
string += '{:.3g}e^{{{:.3g} t}}+{:.3g}e^{{{:.3g} t}}'\
.format(A, sqrt_oh_eval - gamma, B, sqrt_oh_eval + gamma)
string += '\n'
return string
else:
def f(t):
return A*np.exp((-gamma+np.sqrt(gamma**2 - omega_0**2))*t) +\
B*np.exp((-gamma-np.sqrt(gamma**2 - omega_0**2))*t)
return f
if __name__ == '__main__':
pass