-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtex_table.py
122 lines (113 loc) · 4.56 KB
/
tex_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
cu_imp = False
try:
import Class_uncertainty as cU
cu_imp = True
except:
pass
def tex_table(a, caption, label, titles, vbars = None, hbars = None,
sigfigs = None):
'''
Automatically formats a LaTEX compatible table with a high degree of
customizability.
<a> should be a numpy array of dimension (m,n) for m columns each of
length n.
<caption> should be a string, which will be the figure text
displayed in LaTEX.
<label> is the LaTEX reference label, which can be
used to refer to this figure in another part of the file.
<titles> should be a list of length m, containing the titles for each
column of the table.
<vbars> (which is an optional parameter) must be an array of length m+1
of ones and zeros where a one represents a vertical bar in the chart,
and zero represents a lack thereof. By default, it will be of the form
[1, 0, 0, ..., 0, 1].
<hbars> (which is an optional parameter) must be an array of length n
of zeros, ones and twos where a one represents a horizontal bar in the
chart and zero represents a lack thereof; two represents a double-bar.
By default, it will be of the form [1, 0, 0, ..., 0, 1].
<sigfigs> (which is an optional parameter) may be an integer OR an array
of length m, with a particular significant figure for each column of
data. Note - these values should be in terms that can be interpreted
in string formatting syntax (for example 0.1 for 1 sigfig after the dot).
'''
if sigfigs is None:
sigfigs = 0.2
nosigfigs = True
else:
nosigfigs = False
a_len = len(a)
titles_len = len(titles)
if a_len > titles_len:
titles += ['']*(a_len - titles_len)
if hbars is None:
hbars = np.zeros(len(a[0]))
hbars[-1] = 1
if isinstance(sigfigs, (float, int)):
sigfigs = np.ones(a_len)*sigfigs
string = r'\begin{table}[H]'
string += '\n\\centering\n'
string += '\\caption{{{}\\label{{{}}}}}\n'.format(caption, label)
string += r'\begin{tabular}{'
if vbars is None:
string += '|c'*a_len
string += '|}'
else:
for n,i in enumerate(vbars):
if n == 0:
if i == 1:
string += '|'
elif i == 0:
string += 'c'
elif i == 1:
string += 'c|'
string += '}'
string += '\n\\hline\n'
for n, title in enumerate(titles):
string += '{} '.format(title)
if n < a_len - 1:
string += '& '
string += '\\\\\n\\hline\n\\hline\n'
for i in range(len(a[0])):
for n,(j,k) in enumerate(zip(a[:,i], sigfigs)):
if isinstance(j, (int, float)):
string += '{:{width}f} '.format(float(j), width = k)
elif cu_imp is True and isinstance(j, (cU.uFloat)):
if nosigfigs is True:
temp = '{}'.format(j)
else:
temp = '{:{width}g} '.format(j, width = k)
temp = (temp.split('±'))
temp[0], temp[1] = temp[0].strip(), temp[1].strip()
if j.uncertainty != 0:
for m,l in enumerate(temp[0]):
if l == 'e':
if float(temp[0][:m]) == 1:
temp[0] = r'10^{' + str(int(temp[0][m+1:])) + '}'
else:
temp[0] = temp[0][:m] + r' \times 10^{' + str(int(temp[0][m+1:])) + '}'
break
for m,l in enumerate(temp[1]):
if l == 'e':
if float(temp[1][:m]) == 1:
temp[1] = r'10^{' + str(int(temp[1][m+1:])) + '}'
else:
temp[1] = temp[1][:m] + r' \times 10^{' + str(int(temp[1][m+1:])) + '}'
break
string += '$' + temp[0] + ' \pm ' + temp[1] + '$ '
else:
string += '$' + temp[0] + '$ '
else:
string += '{} '.format(j)
if n < a_len - 1:
string += '& '
if hbars[i] == 2:
string += '\\\\\n\\hline\n\\hline\n'
elif hbars[i] == 1:
string += '\\\\\n\\hline\n'
elif hbars[i] == 0:
string += '\\\\\n'
string += r'\end{tabular}'
string += '\n'
string += r'\end{table}'
return string