forked from IBM/nzgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
numeric32.go
810 lines (695 loc) · 22.5 KB
/
numeric32.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
package nzgo
const NDIGIT_INT64 bool = false
const MAX_NUMERIC_DIGIT_COUNT = 4
const NUMERIC_MAX_PRECISION = 38
const HI32_MASK uint64 = 0xffffffff00000000
const USE_MUL_DOUBLE bool = false
type TNumericDigit uint32
type TNumericData struct {
digit [MAX_NUMERIC_DIGIT_COUNT]TNumericDigit /* digit[0] is hi order */
}
type NumericVar struct {
data TNumericData /* value */
scale int /* scale of 'data' */
rscale int /* logical result scale */
rprecision int /* logical result precision */
}
func base() uint64 {
return (uint64(1) << 32)
}
func highPart(val uint64) uint64 {
return (val >> 32)
}
func lowPart(val uint64) uint64 {
return (val & ((uint64(1) << 32) - 1))
}
func encodeNum(words []int64, low int64, hi int64) {
words[0] = int64(lowPart(uint64(low)))
words[1] = int64(highPart(uint64(low)))
words[2] = int64(lowPart(uint64(hi)))
words[3] = int64(highPart(uint64(hi)))
}
/* Pack an array of 4 words into a two-word integer.
WORDS points to the array of words.
The integer is stored into *LOW and *HI as two `int64' pieces.
*/
func decodeNum(words []int64, low *int64, hi *int64) {
*low = words[0] | words[1]*(int64(1)<<32)
*hi = words[2] | words[3]*(int64(1)<<32)
}
//Check if numeric variable value is negative
func isNumeric_Data_Negative(numdataP TNumericData) bool {
return (numdataP.digit[0] & 0x80000000) != 0
}
func copy_128(destP *TNumericData, srcP *TNumericData) {
destP.digit[0] = srcP.digit[0]
destP.digit[1] = srcP.digit[1]
destP.digit[2] = srcP.digit[2]
destP.digit[3] = srcP.digit[3]
}
func negate_128(arg *TNumericData) bool {
//First complement the value (1's complement)
for i := 0; i < MAX_NUMERIC_DIGIT_COUNT; i++ {
arg.digit[i] = ^(arg.digit[i])
}
//Then increment it to form 2's complement (negative)
return inc_128(arg)
}
//for 2's complement
func inc_128(arg *TNumericData) bool {
i := MAX_NUMERIC_DIGIT_COUNT
var work int64
var carry bool = true
bInputNegative := isNumeric_Data_Negative(*arg)
for (i != 0) && carry {
i -= 1
work = (int64(arg.digit[i])) + 1
carry = (uint64(work) & HI32_MASK) != 0
arg.digit[i] = (TNumericDigit)(work & 0xffffffff)
}
if !bInputNegative {
return isNumeric_Data_Negative(*arg)
} else {
return false
}
}
func div10_128(numeratorP *TNumericData, quotientP *TNumericData) int {
var remainder int = 0
var work int64
for i := 0; i < MAX_NUMERIC_DIGIT_COUNT; i++ {
work = int64(uint64(numeratorP.digit[i]) + uint64(remainder)<<32)
if work != 0 {
quotientP.digit[i] = (TNumericDigit)(work / 10)
remainder = int(work % 10)
} else {
quotientP.digit[i] = 0
remainder = 0
}
}
return (remainder)
}
//Get Numeric variable value represented in string format
func get_str_from_var(nvar *NumericVar, dscale int) string {
var workData TNumericData
var unbiasedDigits [NUMERIC_MAX_PRECISION]int
var iplaces int
var tmp int
var work [NUMERIC_MAX_PRECISION + 1]byte
var res [NUMERIC_MAX_PRECISION + 4]byte //Sign byte, . byte, nul terminating string
var bLeadingZeroes bool = true
var pos int = 0
bNegative := isNumeric_Data_Negative(nvar.data)
if round_var(nvar, dscale) {
return ""
}
copy_128(&workData, &nvar.data)
if bNegative {
if negate_128(&workData) {
return ""
}
}
for tmp = 0; tmp < NUMERIC_MAX_PRECISION; tmp++ {
unbiasedDigits[NUMERIC_MAX_PRECISION-tmp-1] = div10_128(&workData, &workData)
}
for tmp = 0; tmp < NUMERIC_MAX_PRECISION; tmp++ {
// suppress leading zeros, but force output of a digit before implied decimal point
if (tmp < NUMERIC_MAX_PRECISION-dscale-1) && bLeadingZeroes && (unbiasedDigits[tmp] == 0) {
continue
}
bLeadingZeroes = false
work[pos] = byte(unbiasedDigits[tmp] + '0')
pos += 1
}
work[pos] = 0 // terminate sork string
tmp = pos // strlen of work data
pos = 0 // to start updating result buffer
if bNegative {
res[pos] = '-'
pos++
}
if dscale != 0 {
iplaces = tmp - dscale //value before decimal
for i := 0; i < iplaces; i++ {
res[pos] = work[i]
pos++
}
res[pos] = '.' //decimal point
pos++
for i := 0; i <= dscale; i++ { // 1 more size to copy \0
res[pos] = work[i+iplaces]
pos++
}
} else {
for i := 0; i <= tmp; i++ {
res[pos] = work[i]
pos++
}
}
dstSpace := string(res[:pos])
return dstSpace
}
func CTable_i_fieldPrecision(tupdesc DbosTupleDesc, coldex int) int {
return (((tupdesc.field_size[coldex]) >> 8) & 0x7F)
}
func CTable_i_fieldScale(tupdesc DbosTupleDesc, coldex int) int {
return ((tupdesc.field_size[coldex]) & 0x00FF)
}
func CTable_i_fieldNumericDigit32Count(tupdesc DbosTupleDesc, coldex int) int {
var sizeTNumericDigit int
sizeTNumericDigit = 4
return (tupdesc.field_trueSize[coldex] / sizeTNumericDigit) //sizeof(TNumericDigit)
}
func GOLANG_numeric_load_var(varP *NumericVar, dataP []TNumericDigit, precision int, scale int, digitCount int) {
var leadDigit TNumericDigit
//extend sign
sign := dataP[0] & 0x80000000
if sign != 0 {
leadDigit = 0xffffffff
} else {
leadDigit = 0
}
var i int
for i = 0; i < MAX_NUMERIC_DIGIT_COUNT-digitCount; i++ {
varP.data.digit[i] = leadDigit
}
j := 0
for i < MAX_NUMERIC_DIGIT_COUNT {
varP.data.digit[i] = dataP[j]
j++
i++
}
varP.scale = scale
varP.rscale = scale
varP.rprecision = precision
}
/* ----------
* round_var() -
* Rounds a numeric var to a target scale.
* overflow will return true.
* ----------
*/
var const_data_ten TNumericData
func round_var(nvar *NumericVar, scale int) bool {
for i := 0; i < MAX_NUMERIC_DIGIT_COUNT; i++ {
const_data_ten.digit[i] = 0
}
const_data_ten.digit[MAX_NUMERIC_DIGIT_COUNT-1] = 10
var aDD int = scale - nvar.scale // additional decimal digits
var positive bool = !isNumeric_Data_Negative(nvar.data)
var workData, temp TNumericData
var round bool
if nvar.scale == scale {
return false
}
copy_128(&workData, &nvar.data)
if !positive {
if negate_128(&workData) {
return true
}
}
if aDD < 0 {
if (aDD != -1) && div_128(&workData, power_of_10(-aDD-1), &workData) {
return true
}
round = (div10_128(&workData, &temp) > 4) //for rounding ro next number
if div_128(&workData, &const_data_ten, &workData) {
return true
}
if round {
if inc_128(&workData) {
return true
}
}
} else if aDD > 0 {
if mul_128(&workData, power_of_10(aDD), &workData) {
return true
}
}
nvar.scale = scale
nvar.rscale = scale // !FIX-jpb rounding should change result scale, right?
copy_128(&nvar.data, &workData)
if !positive {
if negate_128(&nvar.data) {
return true
}
}
return false
}
/* Multiply two doubleword integers with doubleword result.
Return nonzero if the operation overflows, assuming it's signed.
Each argument is given as two `int64' pieces.
One argument is L1 and H1; the other, L2 and H2.
The value is stored as two `int64' pieces in *LV and *HV.
*/
func mul_double(l1 int64, h1 int64, l2 int64, h2 int64, lv *int64, hv *int64) bool {
var arg1 [4]int64
var arg2 [4]int64
var prod = [4 * 2]int64{0, 0, 0, 0, 0, 0, 0, 0}
var carry uint64
var i, j, k int
var toplow, tophigh, neglow, neghigh int64
encodeNum(arg1[:4], l1, h1)
encodeNum(arg2[:4], l2, h2)
for i = 0; i < 4; i++ {
carry = 0
for j = 0; j < 4; j++ {
k = i + j
/* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
carry += uint64(arg1[i] * arg2[j])
/* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
carry += uint64(prod[k])
prod[k] = int64(lowPart(carry))
carry = highPart(carry)
}
prod[i+4] = int64(carry)
}
decodeNum(prod[:4], lv, hv) /* This ignores prod[4] through prod[4*2-1] */
/* Check for overflow by calculating the top half of the answer in full;
it should agree with the low half's sign bit. */
decodeNum(prod[4:], &toplow, &tophigh)
if h1 < 0 {
neg_double(l2, h2, &neglow, &neghigh)
add_double(neglow, neghigh, toplow, tophigh, &toplow, &tophigh)
}
if h2 < 0 {
neg_double(l1, h1, &neglow, &neghigh)
add_double(neglow, neghigh, toplow, tophigh, &toplow, &tophigh)
}
if *hv < 0 {
return ((^(toplow & tophigh)) != 0)
} else {
return ((toplow | tophigh) != 0)
}
}
/* Negate a doubleword integer with doubleword result.
Return nonzero if the operation overflows, assuming it's signed.
The argument is given as two `int64' pieces in L1 and H1.
The value is stored as two `int64' pieces in *LV and *HV.
*/
func neg_double(l1 int64, h1 int64, lv *int64, hv *int64) int {
if l1 == 0 {
*lv = 0
*hv = -h1
if (*hv & h1) < 0 {
return 1
} else {
return 0
}
} else {
*lv = -l1
*hv = ^h1
return 0
}
}
func overflow_sum_sign(a int64, b int64, sum int64) int {
if (^((a) ^ (b)) & ((a) ^ (sum))) < 0 {
return 1
} else {
return 0
}
}
/* Add two doubleword integers with doubleword result.
Each argument is given as two `int64' pieces.
One argument is L1 and H1; the other, L2 and H2.
The value is stored as two `int64' pieces in *LV and *HV.
*/
func add_double(l1 int64, h1 int64, l2 int64, h2 int64, lv *int64, hv *int64) int {
var l, h int64
l = l1 + l2
var badd int64
if uint64(l) < uint64(l1) {
badd = 1
} else {
badd = 0
}
h = h1 + h2 + badd
*lv = l
*hv = h
return overflow_sum_sign(h1, h2, h)
}
func mul_128(v1 *TNumericData, v2 *TNumericData, vRes *TNumericData) bool {
// We treat the arguments as having 8 16-bit digits and do long multiplications
// as in the days of the 3 Rs
//
// Here's an example with 3 digit numbers written ABC and DEF. C and F are in the
// units' (i.e. "base to the zeroth power) position, B and E in the "base" position,
// and A and D in the "base squared" position.
//
// The units position of the product will be the low digit of C*F.
// The "base" position of the product will be the low digit of (B*F+C*E) plus
// the carry digit from the first step (this is the high digit of the product C*F.
// The "base squared" position of the product will be the low digit of (A*F+B*E+C*D)
// plus carry. The "base cubed" position of the product will be the low digit of
// (A*E+B*D) plus carry. The "base to the fourth" position of the product will be
// the low digit of A*D plus carry. And the "base to the fifth" position of the
// product will be the carry.
//
// We load the 4 32-bit digit value of "v1" into the 8 16-bit digit value "a",
// load "v1" into "b", compute the 32-bit sums of products, as in the example
// above, and store them into the 15 32-bit digit "work" value. Finally, we
// step through the "work" value entries, adding any carry, and assigning the low
// 16-bit digit of each entry to the corresponding 16-bit digit of the 16 16-bit
// digit result "c"
//
// !FIX-jpb this should be optimized
if USE_MUL_DOUBLE {
var l1, h1, l2, h2, lv, hv int64
var bRetVal bool
h1 = (int64(v1.digit[0]) << 32) + int64(v1.digit[1])
l1 = (int64(v1.digit[2]) << 32) + int64(v1.digit[3])
h2 = (int64(v2.digit[0]) << 32) + int64(v2.digit[1])
l2 = (int64(v2.digit[2]) << 32) + int64(v2.digit[3])
bRetVal = mul_double(l1, h1, l2, h2, &lv, &hv)
vRes.digit[0] = (TNumericDigit)((uint64(hv) & HI32_MASK) >> 32)
vRes.digit[1] = (TNumericDigit)(hv & 0xffffffff)
vRes.digit[2] = (TNumericDigit)((uint64(lv) & HI32_MASK) >> 32)
vRes.digit[3] = (TNumericDigit)(lv & 0xffffffff)
return bRetVal
} else {
var v1abs, v2abs TNumericData
var a [8]uint16
var b [8]uint16
var c [16]uint16
var w [15]uint32
var carry uint16 = 0
var i int
var bRetVal bool
var bResNegative bool
var val uint64
if (v1.digit[0] | v1.digit[1] | v1.digit[2] |
v2.digit[0] | v2.digit[1] | v2.digit[2]) == 0 {
val = uint64(v1.digit[3]) * uint64(v2.digit[3])
vRes.digit[3] = (TNumericDigit)(val & 0xFFFFFFFF)
vRes.digit[2] = (TNumericDigit)(val >> 32)
vRes.digit[1] = 0
vRes.digit[0] = 0
return (false)
}
bResNegative = (isNumeric_Data_Negative(*v1) != isNumeric_Data_Negative(*v2))
copy_128(&v1abs, v1)
if isNumeric_Data_Negative(v1abs) {
if negate_128(&v1abs) {
return true
}
}
copy_128(&v2abs, v2)
if isNumeric_Data_Negative(v2abs) {
if negate_128(&v2abs) {
return true
}
}
load_8_digit(a[:], &v1abs)
load_8_digit(b[:], &v2abs)
w[0] = uint32(a[0]) * uint32(b[0])
w[1] = uint32(a[1])*uint32(b[0]) + uint32(a[0])*uint32(b[1])
w[2] = uint32(a[2])*uint32(b[0]) + uint32(a[1])*uint32(b[1]) + uint32(a[0])*uint32(b[2])
w[3] = uint32(a[3])*uint32(b[0]) + uint32(a[2])*uint32(b[1]) + uint32(a[1])*uint32(b[2]) + uint32(a[0])*uint32(b[3])
w[4] = uint32(a[4])*uint32(b[0]) + uint32(a[3])*uint32(b[1]) + uint32(a[2])*uint32(b[2]) + uint32(a[1])*uint32(b[3]) +
uint32(a[0])*uint32(b[4])
w[5] = uint32(a[5])*uint32(b[0]) + uint32(a[4])*uint32(b[1]) + uint32(a[3])*uint32(b[2]) + uint32(a[2])*uint32(b[3]) +
uint32(a[1])*uint32(b[4]) + uint32(a[0])*uint32(b[5])
w[6] = uint32(a[6])*uint32(b[0]) + uint32(a[5])*uint32(b[1]) + uint32(a[4])*uint32(b[2]) + uint32(a[3])*uint32(b[3]) +
uint32(a[2])*uint32(b[4]) + uint32(a[1])*uint32(b[5]) + uint32(a[0])*uint32(b[6])
w[7] = uint32(a[7])*uint32(b[0]) + uint32(a[6])*uint32(b[1]) + uint32(a[5])*uint32(b[2]) + uint32(a[4])*uint32(b[3]) +
uint32(a[3])*uint32(b[4]) + uint32(a[2])*uint32(b[5]) + uint32(a[1])*uint32(b[6]) + uint32(a[0])*uint32(b[7])
w[8] = uint32(a[7])*uint32(b[1]) + uint32(a[6])*uint32(b[2]) + uint32(a[5])*uint32(b[3]) + uint32(a[4])*uint32(b[4]) +
uint32(a[3])*uint32(b[5]) + uint32(a[2])*uint32(b[6]) + uint32(a[1])*uint32(b[7])
w[9] = uint32(a[7])*uint32(b[2]) + uint32(a[6])*uint32(b[3]) + uint32(a[5])*uint32(b[4]) + uint32(a[4])*uint32(b[5]) +
uint32(a[3])*uint32(b[6]) + uint32(a[2])*uint32(b[7])
w[10] = uint32(a[7])*uint32(b[3]) + uint32(a[6])*uint32(b[4]) + uint32(a[5])*uint32(b[5]) + uint32(a[4])*uint32(b[6]) +
uint32(a[3])*uint32(b[7])
w[11] = uint32(a[7])*uint32(b[4]) + uint32(a[6]*b[5]) + uint32(a[5])*uint32(b[6]) + uint32(a[4])*uint32(b[7])
w[12] = uint32(a[7])*uint32(b[5]) + uint32(a[6])*uint32(b[6]) + uint32(a[5])*uint32(b[7])
w[13] = uint32(a[7])*uint32(b[6]) + uint32(a[6])*uint32(b[7])
w[14] = uint32(a[7]) * uint32(b[7])
for i = 15; i > 0; i-- {
w[i-1] += uint32(carry)
c[i] = (uint16)(w[i-1] & 0xffff)
carry = (uint16)(w[i-1] >> 16)
}
c[0] = carry // hi order digit is final carry
bRetVal = store_8_digit_from_16(c[:], vRes)
if bResNegative {
if negate_128(vRes) {
return true
}
}
return (bRetVal)
}
}
func load_8_digit(dest []uint16, src *TNumericData) {
var i int
for i = 0; i < MAX_NUMERIC_DIGIT_COUNT; i++ {
dest[2*i] = uint16(uint32(src.digit[i] >> 16))
dest[2*i+1] = uint16(uint32(src.digit[i] & 0xffffffff))
}
}
// tests the hi order 8 digits of src[] for overflow and stores the low order 8 in dest
func store_8_digit_from_16(src []uint16, dest *TNumericData) bool {
var i, j int
for i = 0; i < 2*MAX_NUMERIC_DIGIT_COUNT; i++ {
if src[i] != 0 {
return true // overflow
}
}
for j = 0; j < MAX_NUMERIC_DIGIT_COUNT; i += 2 {
dest.digit[j] = TNumericDigit((uint32(src[i]) << 16) + uint32(src[i+1]))
j += 1
}
return false
}
// mul10_and_add multiplies non-negative TNumericData in place by 10 and adds an int
func mul10_and_add(data *TNumericData, adder int) bool {
i := MAX_NUMERIC_DIGIT_COUNT - 1
var work uint64
var carry uint32 = uint32(adder)
for ; i >= 0; i -= 1 {
work = (uint64(data.digit[i]))*uint64(10) + uint64(carry)
data.digit[i] = TNumericDigit(work & 0xffffffff)
carry = (uint32)(work >> 32)
}
return (carry != 0) // true=> overflow
}
func power_of_10(exponent int) *TNumericData {
var powersOfTen [NUMERIC_MAX_PRECISION]TNumericData
var needsInit bool = true
var next TNumericData
var i int
if needsInit {
next.digit[0] = 0
next.digit[1] = 0
next.digit[2] = 0
next.digit[3] = 1
for i = 0; i < NUMERIC_MAX_PRECISION; i++ {
powersOfTen[i].digit[0] = next.digit[0]
powersOfTen[i].digit[1] = next.digit[1]
powersOfTen[i].digit[2] = next.digit[2]
powersOfTen[i].digit[3] = next.digit[3]
if mul10_and_add(&next, 0) { // use convenient helper routine in this one-time initing
// assert(false); // shouldn't happen if our loop limit correct
}
}
needsInit = false
}
if exponent < NUMERIC_MAX_PRECISION {
return &powersOfTen[exponent]
} else if exponent == NUMERIC_MAX_PRECISION {
return &powersOfTen[0] // NUMERIC_MAX_PRECISIONth needed for get_digit_count, but entry not used
} else {
return nil // This will never arise as its made sure scale will limit to MAX_NUMERIC_DIGIT_COUNT
}
}
func div_128(numeratorP *TNumericData, denominatorP *TNumericData, resultP *TNumericData) bool {
var hidenom, lodenom, hinum, lonum, hiquotient, loquotient, hiremainder, loremainder int64
var num, den TNumericData
var bResNegative bool = (isNumeric_Data_Negative(*numeratorP) != isNumeric_Data_Negative(*denominatorP))
copy_128(&num, numeratorP)
if isNumeric_Data_Negative(num) {
if negate_128(&num) {
return true
}
}
copy_128(&den, denominatorP)
if isNumeric_Data_Negative(den) {
if negate_128(&den) {
return true
}
}
hinum = (int64(num.digit[0]) << 32) + int64(num.digit[1])
lonum = (int64(num.digit[2]) << 32) + int64(num.digit[3])
hidenom = (int64(den.digit[0]) << 32) + int64(den.digit[1])
lodenom = (int64(den.digit[2]) << 32) + int64(den.digit[3])
if div_and_round_double(1, lonum, hinum, lodenom, hidenom, &loquotient,
&hiquotient, &loremainder, &hiremainder) != 0 {
return true
}
resultP.digit[0] = (TNumericDigit)((uint64(hiquotient) & HI32_MASK) >> 32)
resultP.digit[1] = (TNumericDigit)(hiquotient & 0xffffffff)
resultP.digit[2] = (TNumericDigit)((uint64(loquotient) & HI32_MASK) >> 32)
resultP.digit[3] = (TNumericDigit)(loquotient & 0xffffffff)
if bResNegative {
if negate_128(resultP) {
return true
}
}
return false
}
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
CODE is a tree code for a kind of division, one of
TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
or EXACT_DIV_EXPR
It controls how the quotient is rounded to a integer.
Return nonzero if the operation overflows.
UNS nonzero says do unsigned division.
*/
func div_and_round_double(uns int, lnum_orig int64, hnum_orig int64,
lden_orig int64, hden_orig int64,
lquo *int64, hquo *int64,
lrem *int64, hrem *int64) int {
var quo_neg int = 0
var num = [4 + 1]int64{0, 0, 0, 0, 0} /* extra element for scaling. */
var den = [4]int64{0, 0, 0, 0}
var quo = [4]int64{0, 0, 0, 0}
var i, j int //register int i, j;
var work uint64
var carry uint64 = 0 //register UNSIGNEDINT64 carry = 0;
var lnum int64 = lnum_orig
var hnum int64 = hnum_orig
var lden int64 = lden_orig
var hden int64 = hden_orig
var overflow int = 0
/* calculate quotient sign and convert operands to unsigned. */
if uns != 0 {
if hnum < 0 {
quo_neg = ^quo_neg //~ quo_neg;
/* (minimum integer) / (-1) is the only overflow case. */
if (neg_double(lnum, hnum, &lnum, &hnum) != 0) && ((lden & hden) == -1) {
overflow = 1
}
}
if hden < 0 {
quo_neg = ^quo_neg //~ quo_neg;
neg_double(lden, hden, &lden, &hden)
}
}
if hnum == 0 && hden == 0 { /* single precision */
*hquo = 0
*hrem = 0
/* This unsigned division rounds toward zero. */
*lquo = int64(uint64(lnum) / uint64(lden))
goto finish_up
}
if hnum == 0 { /* trivial case: dividend < divisor */
/* hden != 0 already checked. */
*hquo = 0
*lquo = 0
*hrem = hnum
*lrem = lnum
goto finish_up
}
encodeNum(num[:4], lnum, hnum)
encodeNum(den[:4], lden, hden)
/* Special code for when the divisor < BASE. */
if hden == 0 && uint64(lden) < base() {
/* hnum != 0 already checked. */
for i = 4 - 1; i >= 0; i-- {
work = uint64(num[i]) + carry*base()
quo[i] = int64(uint64(work) / uint64(lden))
carry = work % uint64(lden)
}
} else {
/* Full double precision division,
with thanks to Don Knuth's "Seminumerical Algorithms". */
var num_hi_sig, den_hi_sig int
var quo_est, scale uint64
/* Find the highest non-zero divisor digit. */
for i = 4 - 1; ; i-- {
if den[i] != 0 {
den_hi_sig = i
break
}
}
/* Insure that the first digit of the divisor is at least BASE/2.
This is required by the quotient digit estimation algorithm. */
scale = base() / uint64(den[den_hi_sig]+1)
if scale > 1 { /* scale divisor and dividend */
carry = 0
for i = 0; i <= 4-1; i++ {
work = (uint64(num[i]) * scale) + carry
num[i] = int64(lowPart(work))
carry = highPart(work)
}
num[4] = int64(carry)
carry = 0
for i = 0; i <= 4-1; i++ {
work = (uint64(den[i]) * scale) + carry
den[i] = int64(lowPart(work))
carry = highPart(work)
if den[i] != 0 {
den_hi_sig = i
}
}
}
num_hi_sig = 4
/* Main loop */
for i = num_hi_sig - den_hi_sig - 1; i >= 0; i-- {
/* guess the next quotient digit, quo_est, by dividing the first
two remaining dividend digits by the high order quotient digit.
quo_est is never low and is at most 2 high. */
var tmp uint64
num_hi_sig = i + den_hi_sig + 1
work = uint64(num[num_hi_sig])*base() + uint64(num[num_hi_sig-1])
if num[num_hi_sig] != den[den_hi_sig] {
quo_est = work / uint64(den[den_hi_sig])
} else {
quo_est = base() - 1
}
/* refine quo_est so it's usually correct, and at most one high. */
tmp = work - quo_est*uint64(den[den_hi_sig])
if tmp < base() && uint64(den[den_hi_sig-1])*quo_est > (tmp*base()+uint64(num[num_hi_sig-2])) {
quo_est--
}
/* Try QUO_EST as the quotient digit, by multiplying the
divisor by QUO_EST and subtracting from the remaining dividend.
Keep in mind that QUO_EST is the I - 1st digit. */
carry = 0
for j = 0; j <= den_hi_sig; j++ {
work = quo_est*uint64(den[j]) + carry
carry = highPart(work)
work = uint64(num[i+j]) - lowPart(work)
num[i+j] = int64(lowPart(work))
if highPart(work) != 0 {
carry = carry + 1
} else {
carry = 0
}
}
/* if quo_est was high by one, then num[i] went negative and
we need to correct things. */
if uint64(num[num_hi_sig]) < carry {
quo_est--
carry = 0 /* add divisor back in */
for j = 0; j <= den_hi_sig; j++ {
work = uint64(num[i+j]) + uint64(den[j]) + carry
carry = highPart(work)
num[i+j] = int64(lowPart(work))
}
num[num_hi_sig] += int64(carry)
}
/* store the quotient digit. */
quo[i] = int64(quo_est)
}
}
decodeNum(quo[:4], lquo, hquo)
finish_up:
/* if result is negative, make it so. */
if quo_neg != 0 {
neg_double(*lquo, *hquo, lquo, hquo)
}
/* compute trial remainder: rem = num - (quo * den) */
mul_double(*lquo, *hquo, lden_orig, hden_orig, lrem, hrem)
neg_double(*lrem, *hrem, lrem, hrem)
add_double(lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem)
return overflow
}