This repository has been archived by the owner on Jul 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgyro_averages.f90
501 lines (399 loc) · 17.8 KB
/
gyro_averages.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
module gyro_averages
use common_types, only: coupled_alpha_type
public :: aj0x, aj0v, aj1x, aj1v
public :: init_bessel, finish_bessel
public :: gyro_average
public :: gyro_average_j1
private
interface gyro_average
module procedure gyro_average_kxky_local
module procedure gyro_average_kxkyz_local
module procedure gyro_average_vmu_local
module procedure gyro_average_vmus_nonlocal
end interface
interface gyro_average_j1
module procedure gyro_average_j1_kxky_local
module procedure gyro_average_j1_kxkyz_local
module procedure gyro_average_j1_vmu_local
module procedure gyro_average_j1_vmus_nonlocal
end interface
real, dimension (:,:,:,:), allocatable :: aj0x, aj1x
! (naky, nakx, nalpha, -nzgrid:nzgrid, -vmu-layout-)
real, dimension (:,:), allocatable :: aj0v, aj1v
! (nmu, -kxkyz-layout-)
! integer, dimension (:,:,:,:), allocatable :: ia_max_aj0a
! complex, dimension (:,:,:,:,:), allocatable :: aj0a
type (coupled_alpha_type), dimension (:,:,:,:), allocatable :: aj0a
integer, dimension (:,:,:), allocatable :: ia_max_gam0a
complex, dimension (:,:,:,:), allocatable :: gam0a, lu_gam0a
integer, dimension (:), allocatable :: lu_gam0a_idx
logical :: bessinit = .false.
contains
subroutine init_bessel
use mp, only: sum_allreduce, proc0
use dist_fn_arrays, only: kperp2
use physics_flags, only: full_flux_surface
use species, only: spec, nspec
use stella_geometry, only: bmag
use zgrid, only: nzgrid, nztot
use vpamu_grids, only: vperp2, nmu, nvpa
use vpamu_grids, only: maxwell_vpa, maxwell_mu, maxwell_fac
! use vpamu_grids, only: integrate_vmu
use vpamu_grids, only: integrate_species
use vpamu_grids, only: mu
use kt_grids, only: naky, nakx, nalpha
use kt_grids, only: naky_all, ikx_max
use kt_grids, only: swap_kxky
use kt_grids, only: aky, akx
use stella_layouts, only: kxkyz_lo, vmu_lo
use stella_layouts, only: iky_idx, ikx_idx, iz_idx, is_idx, imu_idx, iv_idx
use spfunc, only: j0, j1
use stella_transforms, only: transform_alpha2kalpha
implicit none
integer :: iz, iky, ikx, imu, is, ia, iv
integer :: ikxkyz, ivmu
real :: arg, dum
integer :: ia_max_aj0a_count, ia_max_gam0a_count
real :: ia_max_aj0a_reduction_factor, ia_max_gam0a_reduction_factor
real, dimension (:), allocatable :: wgts
real, dimension (:), allocatable :: aj0_alpha
complex, dimension (:), allocatable :: aj0_kalpha, gam0_kalpha
real, dimension (:), allocatable :: gam0_alpha
real, dimension (:,:,:), allocatable :: kperp2_swap
write (*,*) 'in init_bessel'
if (bessinit) return
bessinit = .true.
write (*,*) 'Passed the init Bessel check'
if (.not.allocated(aj0v)) then
allocate (aj0v(nmu,kxkyz_lo%llim_proc:kxkyz_lo%ulim_alloc))
aj0v = 0.
end if
if (.not.allocated(aj1v)) then
allocate (aj1v(nmu,kxkyz_lo%llim_proc:kxkyz_lo%ulim_alloc))
aj1v = 0.
end if
ia = 1
do ikxkyz = kxkyz_lo%llim_proc, kxkyz_lo%ulim_proc
iky = iky_idx(kxkyz_lo,ikxkyz)
ikx = ikx_idx(kxkyz_lo,ikxkyz)
iz = iz_idx(kxkyz_lo,ikxkyz)
is = is_idx(kxkyz_lo,ikxkyz)
do imu = 1, nmu
arg = spec(is)%bess_fac*spec(is)%smz_psi0*sqrt(vperp2(ia,iz,imu)*kperp2(iky,ikx,ia,iz))/bmag(ia,iz)
aj0v(imu,ikxkyz) = j0(arg)
! note that j1 returns and aj1 stores J_1(x)/x (NOT J_1(x)),
aj1v(imu,ikxkyz) = j1(arg)
end do
end do
if (full_flux_surface) then
! wgts are species-dependent factors apperaing in Gamma0 factor
allocate (wgts(nspec))
wgts = spec%dens*spec%z**2/spec%temp
allocate (aj0_kalpha(naky))
allocate (gam0_kalpha(naky))
allocate (kperp2_swap(naky_all,ikx_max,nalpha))
! if (.not.allocated(ia_max_aj0a)) allocate(ia_max_aj0a(naky_all,ikx_max,-nzgrid:nzgrid,vmu_lo%llim_proc:vmu_lo%ulim_alloc))
if (.not.allocated(ia_max_gam0a)) allocate(ia_max_gam0a(naky_all,ikx_max,-nzgrid:nzgrid))
if (.not.allocated(aj0a)) then
! allocate(aj0a(naky,naky_all,ikx_max,-nzgrid:nzgrid,vmu_lo%llim_proc:vmu_lo%ulim_alloc))
allocate(aj0a(naky_all,ikx_max,-nzgrid:nzgrid,vmu_lo%llim_proc:vmu_lo%ulim_alloc))
! aj0a = 0.
end if
if (.not.allocated(gam0a)) then
allocate(gam0a(naky,naky_all,ikx_max,-nzgrid:nzgrid)) ; gam0a = 0.
allocate(lu_gam0a(naky,naky_all,ikx_max,-nzgrid:nzgrid)) ; lu_gam0a = 0.
! allocate(lu_gam0a_idx(naky,naky_all,ikx_max,-nzgrid:nzgrid)) ; lu_gam0a_idx = 0.
end if
write (*,*) 'About to work out j0'
ia_max_aj0a_count = 0 ; ia_max_gam0a_count = 0
do iz = -nzgrid, nzgrid
do ia = 1, nalpha
call swap_kxky (kperp2(:,:,ia,iz), kperp2_swap(:,:,ia))
end do
allocate (aj0_alpha(nalpha))
do ivmu = vmu_lo%llim_proc, vmu_lo%ulim_proc
is = is_idx(vmu_lo,ivmu)
imu = imu_idx(vmu_lo,ivmu)
do ikx = 1, ikx_max
do iky = 1, naky_all
do ia = 1, nalpha
arg = spec(is)%bess_fac*spec(is)%smz_psi0*sqrt(vperp2(ia,iz,imu)*kperp2_swap(iky,ikx,ia))/bmag(ia,iz)
aj0_alpha(ia) = j0(arg)
end do
if (iz == 0 .and. ikx == 1 .and. iky == naky_all/2 .and. imu == nmu/2 .and. is == 1 .and. iv_idx(vmu_lo,ivmu)==1) then
write (*,*)
do ia = 1, nalpha
write (*,*) 'j0_alpha', ia, aky(iky), mu(imu), kperp2_swap(iky,ikx,ia), aj0_alpha(ia)
end do
write (*,*)
end if
! fourier transform aj0_alpha
! note that fourier coefficients aj0_kalpha have
! been filter to avoid aliasing
call transform_alpha2kalpha (aj0_alpha, aj0_kalpha)
! call find_max_required_kalpha_index (aj0_kalpha, ia_max_aj0a(iky,ikx,iz,ivmu), imu, iz)
! ia_max_aj0a_count = ia_max_aj0a_count + ia_max_aj0a(iky,ikx,iz,ivmu)
call find_max_required_kalpha_index (aj0_kalpha, aj0a(iky,ikx,iz,ivmu)%max_idx, imu, iz, is)
ia_max_aj0a_count = ia_max_aj0a_count + aj0a(iky,ikx,iz,ivmu)%max_idx
if (.not.associated(aj0a(iky,ikx,iz,ivmu)%fourier)) &
allocate (aj0a(iky,ikx,iz,ivmu)%fourier(aj0a(iky,ikx,iz,ivmu)%max_idx))
! aj0a(:ia_max_aj0a(iky,ikx,iz,ivmu),iky,ikx,iz,ivmu) = aj0_kalpha(:ia_max_aj0a(iky,ikx,iz,ivmu))
aj0a(iky,ikx,iz,ivmu)%fourier = aj0_kalpha(:aj0a(iky,ikx,iz,ivmu)%max_idx)
end do
end do
end do
deallocate (aj0_alpha)
allocate (aj0_alpha(vmu_lo%llim_proc:vmu_lo%ulim_alloc))
allocate (gam0_alpha(nalpha))
do ikx = 1, ikx_max
do iky = 1, naky_all
do ia = 1, nalpha
! get J0 for all vpar, mu, spec values
do ivmu = vmu_lo%llim_proc, vmu_lo%ulim_proc
is = is_idx(vmu_lo,ivmu)
imu = imu_idx(vmu_lo,ivmu)
iv = iv_idx(vmu_lo,ivmu)
arg = spec(is)%bess_fac*spec(is)%smz_psi0*sqrt(vperp2(ia,iz,imu)*kperp2_swap(iky,ikx,ia))/bmag(ia,iz)
aj0_alpha(ivmu) = j0(arg)
! form coefficient needed to calculate 1-Gamma_0
aj0_alpha(ivmu) = (1.0-aj0_alpha(ivmu)**2) &
* maxwell_vpa(iv,is)*maxwell_mu(ia,iz,imu,is)*maxwell_fac(is)
end do
! calculate gamma0 = int d3v (1-J0^2)*F_{Maxwellian}
call integrate_species (aj0_alpha, iz, wgts, gam0_alpha(ia), ia)
end do
if (iz == 0 .and. ikx == 1 .and. iky == naky_all/2) then
write (*,*)
do ia = 1, nalpha
write (*,*) 'gam0_alpha', ia, aky(iky), kperp2_swap(iky,ikx,ia), gam0_alpha(ia)
end do
write (*,*)
end if
! fourier transform Gamma_0(alpha)
call transform_alpha2kalpha (gam0_alpha, gam0_kalpha)
call find_max_required_kalpha_index (gam0_kalpha, ia_max_gam0a(iky,ikx,iz))
ia_max_gam0a_count = ia_max_gam0a_count + ia_max_gam0a(iky,ikx,iz)
gam0a(:ia_max_gam0a(iky,ikx,iz),iky,ikx,iz) = gam0_kalpha(:ia_max_gam0a(iky,ikx,iz))
end do
end do
deallocate (aj0_alpha, gam0_alpha)
end do
! lu_gam0a = gam0a
! call lu_decomposition (lu_gam0a, lu_gam0a_idx, dum)
! calculate the reduction factor of Fourier modes
! used to represent J0
call sum_allreduce (ia_max_aj0a_count)
ia_max_aj0a_reduction_factor = real(ia_max_aj0a_count)/real(naky*nakx*nztot*nmu*nvpa*nspec*naky)
call sum_allreduce (ia_max_gam0a_count)
ia_max_gam0a_reduction_factor = real(ia_max_gam0a_count)/real(naky*nakx*nztot*naky)
if (proc0) then
write (*,*) 'average number of k-alphas needed to represent J0(kperp(alpha))=', ia_max_aj0a_reduction_factor*naky, 'out of ', naky
write (*,*) 'average number of k-alphas needed to represent Gamma0(kperp(alpha))=', ia_max_gam0a_reduction_factor*naky, 'out of ', naky
write (*,*)
end if
deallocate (wgts)
deallocate (aj0_kalpha, gam0_kalpha)
deallocate (kperp2_swap)
else
if (.not.allocated(aj0x)) then
allocate (aj0x(naky,nakx,-nzgrid:nzgrid,vmu_lo%llim_proc:vmu_lo%ulim_alloc))
aj0x = 0.
end if
if (.not.allocated(aj1x)) then
allocate (aj1x(naky,nakx,-nzgrid:nzgrid,vmu_lo%llim_proc:vmu_lo%ulim_alloc))
aj1x = 0.
end if
ia = 1
do ivmu = vmu_lo%llim_proc, vmu_lo%ulim_proc
is = is_idx(vmu_lo,ivmu)
imu = imu_idx(vmu_lo,ivmu)
do iz = -nzgrid, nzgrid
do ikx = 1, nakx
do iky = 1, naky
arg = spec(is)%bess_fac*spec(is)%smz_psi0*sqrt(vperp2(ia,iz,imu)*kperp2(iky,ikx,ia,iz))/bmag(ia,iz)
aj0x(iky,ikx,iz,ivmu) = j0(arg)
! note that j1 returns and aj1 stores J_1(x)/x (NOT J_1(x)),
aj1x(iky,ikx,iz,ivmu) = j1(arg)
end do
end do
end do
end do
end if
end subroutine init_bessel
subroutine find_max_required_kalpha_index (ft, idx, imu, iz, is)
use vpamu_grids, only: maxwell_mu
implicit none
complex, dimension (:), intent (in) :: ft
integer, intent (out) :: idx
integer, intent (in), optional :: imu, iz, is
real, parameter :: tol_floor = 0.01
integer :: i, n
real :: subtotal, total
real :: tol
real, dimension (:), allocatable :: ftmod2
n = size(ft)
! use conservative estimate
! when deciding number of modes to retain
if (present(imu) .and. present(iz).and.present(is)) then
tol = min(0.1,tol_floor/maxval(maxwell_mu(:,iz,imu,is)))
else
tol = tol_floor
end if
allocate (ftmod2(n))
! get spectral energy associated with each mode
ftmod2 = real(ft*conjg(ft))
! get total spectral energy
total = sum(ftmod2)
subtotal = 0.
! find minimum spectral index for which
! desired percentage of spectral energy contained
! in modes with indices at or below it
if (total > 0.) then
i = 1
do while (subtotal < total*(1.0-tol))
idx = i
subtotal = sum(ftmod2(:i))
i = i + 1
end do
else
idx = 1
end if
deallocate (ftmod2)
end subroutine find_max_required_kalpha_index
subroutine finish_bessel
implicit none
if (allocated(aj0v)) deallocate (aj0v)
if (allocated(aj1v)) deallocate (aj1v)
if (allocated(aj0x)) deallocate (aj0x)
if (allocated(aj1x)) deallocate (aj1x)
if (allocated(aj0a)) deallocate (aj0a)
if (allocated(gam0a)) deallocate (gam0a)
if (allocated(lu_gam0a)) deallocate (lu_gam0a)
! if (allocated(ia_max_aj0a)) deallocate (ia_max_aj0a)
if (allocated(ia_max_gam0a)) deallocate (ia_max_gam0a)
bessinit = .false.
end subroutine finish_bessel
subroutine gyro_average_kxky_local (field, iz, ivmu, gyro_field)
use physics_flags, only: full_flux_surface
use kt_grids, only: naky, nakx
use kt_grids, only: ikx_max
use kt_grids, only: swap_kxky_ordered, swap_kxky_back_ordered
implicit none
complex, dimension (:,:), intent (in) :: field
integer, intent (in) :: iz, ivmu
complex, dimension (:,:), intent (out) :: gyro_field
integer :: ia, iky, ikx
integer :: idx
integer :: naky_all
complex, dimension (:,:), allocatable :: field_kyall, gyro_field_kyall
if (full_flux_surface) then
! naky_all = 2*naky-1
! ! need to switch from ky>=0 and all kx
! ! to kx>=0 and all ky (using reality condition)
! allocate (field_kyall(naky_all,ikx_max))
! allocate (gyro_field_kyall(naky_all,ikx_max)) ; gyro_field_kyall = 0.
! call swap_kxky_ordered (field, field_kyall)
! ! NB: J0(kx,ky) = J0(-kx,-ky)
! do ikx = 1, ikx_max
! do iky = 1, naky_all
! ! account for contributions from less positive ky values (and zero)
! do ia = 1, min(aj0a(iky,ikx,iz,ivmu)%max_idx,iky)
! idx = iky-ia+1
! gyro_field_kyall(iky,ikx) = gyro_field_kyall(iky,ikx) &
! + aj0a(idx,ikx,iz,ivmu)%fourier(ia)*field_kyall(idx,ikx)
! end do
! ! account for contributions from more positive ky values
! if (aj0a(iky,ikx,iz,ivmu)%max_idx > 1 .and. iky /= naky_all) then
! do ia = 2, min(aj0a(iky,ikx,iz,ivmu)%max_idx,naky_all-iky+1)
! idx = iky+ia-1
! gyro_field_kyall(iky,ikx) = gyro_field_kyall(iky,ikx) &
! + aj0a(idx,ikx,iz,ivmu)%fourier(ia)*field_kyall(idx,ikx)
! end do
! end if
! end do
! end do
! call swap_kxky_back_ordered (gyro_field_kyall, gyro_field)
! deallocate (field_kyall, gyro_field_kyall)
else
gyro_field = aj0x(:,:,iz,ivmu)*field
! INCLUSION OF BELOW ALLOCATE/DEALLOCATE STATEMENTS
! OBSERVED TO INCREASE RUN-TIME BY FACTOR OF 3 FOR
! MODERATE RESOLUTION LINEAR SIMULATION
! I DO NOT UNDERSTAND WHY
! allocate (field_kyall(1,1)) ; deallocate (field_kyall)
! allocate (gyro_field_kyall(1,1)) ; deallocate (gyro_field_kyall)
end if
end subroutine gyro_average_kxky_local
subroutine gyro_average_kxkyz_local (field, ivmu, gyro_field)
use zgrid, only: nzgrid, ntubes
implicit none
complex, dimension (:,:,-nzgrid:,:), intent (in) :: field
integer, intent (in) :: ivmu
complex, dimension (:,:,-nzgrid:,:), intent (out) :: gyro_field
integer :: iz, it
! NEED TO FIGURE OUT WHY BELOW LOOP SLOWS DOWN CODE A BIT
! WILL HAVE TO USE IT WHEN DOING FULL FLUX SURFACE
! do it = 1, ntubes
! do iz = -nzgrid, nzgrid
! call gyro_average (field(:,:,iz,it), iz, ivmu, gyro_field(:,:,iz,it))
! end do
! end do
gyro_field = spread(aj0x(:,:,:,ivmu),4,ntubes)*field
end subroutine gyro_average_kxkyz_local
subroutine gyro_average_vmu_local (distfn, ikxkyz, gyro_distfn)
use vpamu_grids, only: nvpa
implicit none
complex, dimension (:,:), intent (in) :: distfn
integer, intent (in) :: ikxkyz
complex, dimension (:,:), intent (out) :: gyro_distfn
gyro_distfn = spread(aj0v(:,ikxkyz),1,nvpa)*distfn
end subroutine gyro_average_vmu_local
subroutine gyro_average_vmus_nonlocal (field, iky, ikx, iz, gyro_field)
use stella_layouts, only: vmu_lo
implicit none
complex, dimension (vmu_lo%llim_proc:), intent (in) :: field
integer, intent (in) :: iky, ikx, iz
complex, dimension (vmu_lo%llim_proc:), intent (out) :: gyro_field
gyro_field = aj0x(iky,ikx,iz,:)*field
end subroutine gyro_average_vmus_nonlocal
subroutine gyro_average_j1_kxky_local (field, iz, ivmu, gyro_field)
use physics_flags, only: full_flux_surface
use kt_grids, only: naky, nakx
use kt_grids, only: ikx_max
use kt_grids, only: swap_kxky_ordered, swap_kxky_back_ordered
implicit none
complex, dimension (:,:), intent (in) :: field
integer, intent (in) :: iz, ivmu
complex, dimension (:,:), intent (out) :: gyro_field
gyro_field = aj1x(:,:,iz,ivmu)*field
end subroutine gyro_average_j1_kxky_local
subroutine gyro_average_j1_kxkyz_local (field, ivmu, gyro_field)
use zgrid, only: nzgrid, ntubes
implicit none
complex, dimension (:,:,-nzgrid:,:), intent (in) :: field
integer, intent (in) :: ivmu
complex, dimension (:,:,-nzgrid:,:), intent (out) :: gyro_field
integer :: iz, it
do it = 1, ntubes
do iz = -nzgrid, nzgrid
call gyro_average_j1 (field(:,:,iz,it), iz, ivmu, gyro_field(:,:,iz,it))
end do
end do
end subroutine gyro_average_j1_kxkyz_local
subroutine gyro_average_j1_vmu_local (distfn, ikxkyz, gyro_distfn)
use vpamu_grids, only: nvpa
implicit none
complex, dimension (:,:), intent (in) :: distfn
integer, intent (in) :: ikxkyz
complex, dimension (:,:), intent (out) :: gyro_distfn
gyro_distfn = spread(aj1v(:,ikxkyz),1,nvpa)*distfn
end subroutine gyro_average_j1_vmu_local
subroutine gyro_average_j1_vmus_nonlocal (field, iky, ikx, iz, gyro_field)
use stella_layouts, only: vmu_lo
implicit none
complex, dimension (vmu_lo%llim_proc:), intent (in) :: field
integer, intent (in) :: iky, ikx, iz
complex, dimension (vmu_lo%llim_proc:), intent (out) :: gyro_field
gyro_field = aj1x(iky,ikx,iz,:)*field
end subroutine gyro_average_j1_vmus_nonlocal
end module gyro_averages