-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
598 lines (435 loc) · 24.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import json
import datetime
from pytz import timezone
import argparse
from torch.utils.data import DataLoader
import os
from model.build_BiSeNet import BiSeNet
import torch
from tensorboardX import SummaryWriter
from tqdm import tqdm
import numpy as np
from utils import create_mask, get_index, save_images, parameter_flops_count, poly_lr_scheduler
from utils import reverse_one_hot, compute_global_accuracy, fast_hist, per_class_iu, stuff_thing_miou
import torch.cuda.amp as amp
from torchvision import transforms
from dataset.cityscapes import Cityscapes
from dataset.gta import GTA
from dataset.idda import IDDA
from model.discriminator import FCDiscriminator, LightDiscriminator
import torch.nn
from torch.nn import NLLLoss
import torch.nn.functional as F
#------------------------------------------------------------------------------
#------------------------ DEFAULT PARAMETERS ----------------------------------
#------------------------------------------------------------------------------
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
NUM_EPOCHS = 50
EPOCH_START_i = 0
BATCH_SIZE = 1
ITER_SIZE = 1
NUM_WORKERS = 4
DATA_SOURCE = './data/GTA5'
DATA_LIST_PATH_SOURCE = 'train.txt'
DATA_TARGET = './data/Cityscapes/data'
DATA_LIST_PATH_TARGET = 'train.txt'
INFO_FILE_PATH = 'info.json'
MASK_PATH = 'data/GTA5/masks/normal'
INPUT_SIZE_SOURCE = '720,1280'
INPUT_SIZE_TARGET = '512,1024'
CROP_WIDTH = '1024'
CROP_HEIGHT = '512'
RANDOM_SEED = 1234
NUM_CLASSES = 19
LEARNING_RATE = 2.5e-4
WEIGHT_DECAY = 0.0005
MOMENTUM = 0.9
POWER = 0.9
LEARNING_RATE_D = 1e-4
LAMBDA_SEG = 0.1
LAMBDA_ADV_TARGET = 0.001
PRETRAINED_MODEL_PATH = None
CONTEXT_PATH = "resnet101"
OPTIMIZER = 'sgd'
LOSS = 'crossentropy'
FLOPS = False
LIGHT = True
WITH_MASK = True
WEIGHTS = True
SAVE_IMAGES = True
SAVE_IMAGES_STEP = 10
TENSORBOARD_LOGDIR = 'run'
CHECKPOINT_STEP = 5
VALIDATION_STEP = 15
SAVE_MODEL_PATH = None
CUDA = '0'
USE_GPU = True
print("Import terminato")
#------------------------------------------------------------------------------------------------------
#-------------------------------------ARGUMENTS PARSING------------------------------------------------
#------------------------------------------------------------------------------------------------------
def get_arguments(params):
parser = argparse.ArgumentParser()
parser.add_argument('--num_epochs', type=int, default=NUM_EPOCHS, help='Number of epochs to train for')
parser.add_argument('--epoch_start_i', type=int, default=EPOCH_START_i, help='Start counting epochs from this number')
parser.add_argument('--batch_size', type=int, default=BATCH_SIZE, help='Number of images in each batch')
parser.add_argument('--iter_size', type=int, default=ITER_SIZE, help='Accumulate gradients for iter_size iteractions')
parser.add_argument('--num_workers', type=int, default=NUM_WORKERS, help='num of workers')
parser.add_argument('--data_source', type=str, default=DATA_SOURCE, help='path of training source data')
parser.add_argument('--data_list_path_source', type=str, default=DATA_LIST_PATH_SOURCE, help='path of training labels of source data')
parser.add_argument('--data_target', type=str, default=DATA_TARGET, help='path of training target data')
parser.add_argument('--data_list_path_target', type=str, default=DATA_LIST_PATH_TARGET, help='path of training labels of target data')
parser.add_argument('--info_file', type=str, default=INFO_FILE_PATH, help='path info file')
parser.add_argument('--mask_path', type=str, default=MASK_PATH, help='path for the masks')
parser.add_argument('--input_size_source', type=str, default=INPUT_SIZE_SOURCE, help='Size of input source image')
parser.add_argument('--input_size_target', type=str, default=INPUT_SIZE_TARGET, help='Size of input target image')
parser.add_argument('--random_seed', type=int, default=RANDOM_SEED, help='Random seed for reproducibility')
parser.add_argument('--num_classes', type=int, default=NUM_CLASSES, help='num of object classes (with void)')
parser.add_argument('--learning_rate', type=float, default=LEARNING_RATE, help='learning rate used for train')
parser.add_argument('--weight_decay', type=float, default=WEIGHT_DECAY, help='Weight decay for SGD')
parser.add_argument('--momentum', type=float, default=MOMENTUM, help='Momentum for SGD')
parser.add_argument('--power', type=float, default=POWER, help='Power for polynomial learning rate decay')
parser.add_argument("--learning_rate_D", type=float, default=LEARNING_RATE_D, help="Base learning rate for discriminator.")
parser.add_argument("--lambda-seg", type=float, default=LAMBDA_SEG,help="lambda_seg.")
parser.add_argument("--lambda-adv-target", type=float, default=LAMBDA_ADV_TARGET,help="lambda_adv for adversarial training.")
parser.add_argument('--pretrained_model_path', type=str, default=PRETRAINED_MODEL_PATH, help='path to pretrained model')
parser.add_argument('--context_path', type=str, default=CONTEXT_PATH, help='The context path model you are using, resnet18, resnet101.')
parser.add_argument('--optimizer', type=str, default=OPTIMIZER, help='optimizer, support rmsprop, sgd, adam')
parser.add_argument('--loss', type=str, default=LOSS, help='loss function, dice or crossentropy')
parser.add_argument('--flops', type=bool, default=FLOPS, help='Display the number of parameter and the number of flops')
parser.add_argument('--light', type=bool, default=LIGHT, help='Perform the training with the lightweight discriminator')
parser.add_argument('--with_mask', type=bool, default=WITH_MASK, help='Applies the mask')
parser.add_argument('--weights', type=bool, default=WEIGHTS, help='Applies the weights for the loss function')
parser.add_argument('--tensorboard_logdir', type=str, default=TENSORBOARD_LOGDIR, help='Directory for the tensorboard writer')
parser.add_argument('--checkpoint_step', type=int, default=CHECKPOINT_STEP, help='How often to save checkpoints (epochs)')
parser.add_argument('--validation_step', type=int, default=VALIDATION_STEP, help='How often to perform validation (epochs)')
parser.add_argument('--save_images', type=bool, default=SAVE_IMAGES, help='Indicate if it is necessary saving examples during validation')
parser.add_argument('--save_images_step', type=bool, default=SAVE_IMAGES_STEP, help='How often save an image during validation')
parser.add_argument('--save_model_path', type=str, default=SAVE_MODEL_PATH, help='path to save model')
parser.add_argument('--cuda', type=str, default=CUDA, help='GPU ids used for training')
parser.add_argument('--use_gpu', type=bool, default=USE_GPU, help='whether to user gpu for training')
args = parser.parse_args(params)
return args
#------------------------------------------------------------------------------------------------------
#-------------------------------------------MAIN-------------------------------------------------------
#------------------------------------------------------------------------------------------------------
def main(params):
""" Initialization and train launch """
print(os.listdir())
#-------------------------------Parse th arguments-------------------------------------------------
args = get_arguments(params)
#-------------------------------------end arguments-----------------------------------------------
#------------------------------------Initialization-----------------------------------------------
#Prepare the source and target sizes
h, w = map(int, args.input_size_source.split(','))
input_size_source = (h, w)
h, w = map(int, args.input_size_target.split(','))
input_size_target = (h, w)
#Build the model
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
model = BiSeNet(args.num_classes, args.context_path)
if torch.cuda.is_available() and args.use_gpu:
model = torch.nn.DataParallel(model).cuda()
#Build the Discirminator
discriminator = LightDiscriminator(num_classes=args.num_classes) if args.light else FCDiscriminator(num_classes=args.num_classes)
if torch.cuda.is_available() and args.use_gpu:
discriminator = torch.nn.DataParallel(discriminator).cuda()
#Flops and paramters counter
if args.flops:
flops, parameters = parameter_flops_count(model, discriminator)
#Print flop results
print("*" * 20)
print(f"Total number of operations: {round((flops.total()) / 1e+9, 4)}G FLOPS")
print(f"Total number of parameters: {parameters}")
print("*" * 20)
#Load pretrained model if exists
if args.pretrained_model_path is not None:
print('load model from %s ...' % args.pretrained_model_path)
model.module.load_state_dict(torch.load(f"{args.pretrained_model_path}/latest_model.pth"))
discriminator.module.load_state_dict(torch.load(f"{args.pretrained_model_path}/latest_discriminator.pth"))
print('Done!')
#Composed transformaions
composed_source = transforms.Compose([transforms.ToTensor(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomCrop(input_size_source, pad_if_needed=True)])
composed_target = transforms.Compose([transforms.ToTensor(),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomCrop(input_size_target, pad_if_needed=True)])
#Datasets instances
GTA5_dataset = GTA(root= args.data_source,
images_folder= 'images',
labels_folder= 'labels',
list_path= args.data_list_path_source,
info_file= args.info_file,
transforms= None
)
GTA5_modified_dataset = GTA(root= args.data_source,
images_folder= 'images',
labels_folder= 'labels',
list_path= args.data_list_path_source,
info_file= args.info_file,
transforms= None
)
IDDA_dataset = IDDA(root= args.data_source,
images_folder= 'images',
labels_folder= 'labels',
list_path= args.data_list_path_source,
info_file= args.info_file,
transforms= None)
source_dataset = {"GTA5" : GTA5_dataset, "GTA5_modified" : GTA5_modified_dataset, "IDDA": IDDA_dataset}
Cityscapes_dataset_train = Cityscapes(root= args.data_target,
images_folder= 'images',
labels_folder='labels',
train=True,
info_file= args.info_file,
transforms = None
)
Cityscapes_dataset_val = Cityscapes(root= args.data_target,
images_folder= 'images',
labels_folder='labels',
train=False,
info_file= args.info_file,
transforms = None
)
#Dataloader instances
trainloader = DataLoader(source_dataset[os.path.basename(args.data_source)],
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
targetloader = DataLoader(Cityscapes_dataset_train,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
valloader = DataLoader(Cityscapes_dataset_val,
batch_size=1,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
#Create mask and weights
mask = None
weights = None
if args.with_mask or args.weights:
mask, weights = create_mask(GTA5_dataset, args.mask_path)
if torch.cuda.is_available() and args.use_gpu:
mask = mask.cuda()
weights = weights.cuda()
#Build Model Optimizer
optimizer = torch.optim.SGD(model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
#Build Discriminator Optimizer
dis_optimizer = torch.optim.Adam(discriminator.parameters(), lr=args.learning_rate_D, betas=(0.9, 0.99))
#------------------------------------end initialization-----------------------------------------------
#--------------------------------------Train Launch---------------------------------------------------
train(args, model, discriminator,
optimizer, dis_optimizer,
trainloader, targetloader, valloader,
mask, weights)
val(args, model, valloader, validation_run='final')
#------------------------------------------------------------------------------------------------------
#-----------------------------------------END MAIN-----------------------------------------------------
#------------------------------------------------------------------------------------------------------
#------------------------------------------------------------------------------------------------------
#------------------------------------------TRAIN-------------------------------------------------------
#------------------------------------------------------------------------------------------------------
def train(args, model, discriminator, #models
optimizer, dis_optimizer, #optimizers
trainloader, targetloader, valloader, #loaders
mask= None, weights= None): #other_parameters
#Create the scalers
scaler = amp.GradScaler()
scaler_dis = amp.GradScaler()
#Suffix for saving
time = datetime.datetime.now(tz=timezone("Europe/Rome")).strftime("%d%B_%H:%M")
suffix = f"{time}_{args.context_path}_epoch={args.num_epochs}_light={args.light}_mask={args.with_mask}_weights={args.weights}_batch={args.batch_size}_lr={args.learning_rate}_resizetarget=({args.input_size_target})_resizesource=({args.input_size_source})_dataset={os.path.basename(args.data_source)}"
args.save_model_path = args.save_model_path + suffix
#Writer
writer = SummaryWriter(f"{args.tensorboard_logdir}{suffix}")
#Set the loss of G
loss_func = torch.nn.CrossEntropyLoss(ignore_index=255)
nllloss = torch.nn.NLLLoss(weight=weights if args.weights else None, ignore_index=255)
#Set the loss of D
bce_loss = torch.nn.BCEWithLogitsLoss()
#Define the labels for adversarial training
source_label = 0
target_label = 1
max_miou = 0
step = 0
for epoch in range(args.epoch_start_i, args.num_epochs):
#Set the model to train mode
model.train()
#Adjust the G lr
lr = poly_lr_scheduler(optimizer, args.learning_rate, iter = epoch, max_iter=args.num_epochs, power=args.power)
#Adjust the D lr
lr_D = poly_lr_scheduler(dis_optimizer, args.learning_rate_D, iter = epoch, max_iter=args.num_epochs, power=args.power)
#TQDM Setting
tq = tqdm(total = len(trainloader)*args.batch_size)
tq.set_description('epoch %d, lr %f' % (epoch, lr))
#Loss arrays
loss_seg_record = []
loss_adv_record = []
loss_D_record = []
for ((source_images, source_labels), (target_images, _)) in zip(trainloader, targetloader):
#----------------------------------Train G----------------------------------------------
#Don't accumulate grads in D
for param in discriminator.parameters():
param.requires_grad = False
#Train with source
source_labels = source_labels.long()
if torch.cuda.is_available() and args.use_gpu:
source_images = source_images.cuda()
source_labels = source_labels.cuda()
optimizer.zero_grad()
dis_optimizer.zero_grad()
with amp.autocast():
output, output_sup1, output_sup2 = model(source_images)
if args.with_mask:
loss1 = nllloss(F.log_softmax(output) + torch.log(mask), source_labels)
else:
loss1 = loss_func(output, source_labels)
loss2 = loss_func(output_sup1, source_labels)
loss3 = loss_func(output_sup2, source_labels)
loss_seg = loss1+loss2+loss3
scaler.scale(loss_seg).backward()
#Train with Target
if torch.cuda.is_available() and args.use_gpu:
target_images = target_images.cuda()
with amp.autocast():
output_target, _, _ = model(target_images)
D_out = discriminator(F.softmax(output_target))
loss_adv_target = bce_loss(D_out,
torch.FloatTensor(D_out.data.size()).fill_(source_label).cuda())
loss_adv = args.lambda_adv_target * loss_adv_target
scaler.scale(loss_adv).backward()
#----------------------------------end G-----------------------------------------------
#----------------------------------Train D----------------------------------------------
# bring back requires_grad
for param in discriminator.parameters():
param.requires_grad = True
# train with source
output = output.detach()
with amp.autocast():
D_out = discriminator(F.softmax(output))
loss_D_source = bce_loss(D_out, torch.FloatTensor(D_out.data.size()).fill_(source_label).cuda())
# train with target
output_target = output_target.detach()
with amp.autocast():
D_out = discriminator(F.softmax(output_target))
loss_D_target = bce_loss(D_out, torch.FloatTensor(D_out.data.size()).fill_(target_label).cuda())
loss_D = loss_D_source*0.5 + loss_D_target*0.5
scaler_dis.scale(loss_D).backward()
#-----------------------------------end D-----------------------------------------------
#Update optmizers
scaler.step(optimizer)
scaler_dis.step(dis_optimizer)
scaler.update()
scaler_dis.update()
#Print statistics
tq.update(args.batch_size)
tq.set_postfix({"loss_seg" : f'{loss_seg:.6f}', "loss_adv" : f'{loss_adv:.6f}', "loss_D" : f'{loss_D:.6f}'})
step += 1
writer.add_scalar('loss_seg_step', loss_seg, step)
writer.add_scalar('loss_adv_step', loss_adv, step)
writer.add_scalar('loss_D_step', loss_D, step)
loss_seg_record.append(loss_seg.item())
loss_adv_record.append(loss_adv.item())
loss_D_record.append(loss_D.item())
tq.close()
#Loss_seg
loss_train_seg_mean = np.mean(loss_seg_record)
writer.add_scalar('epoch/loss_epoch_train_seg', float(loss_train_seg_mean), epoch)
print(f'Average loss_seg for epoch {epoch}: {loss_train_seg_mean}')
#Loss_adv
loss_train_adv_mean = np.mean(loss_adv_record)
writer.add_scalar('epoch/loss_epoch_train_adv', float(loss_train_adv_mean), epoch)
print(f'Average loss_adv for epoch {epoch}: {loss_train_adv_mean}')
#Loss_D
loss_train_D_mean = np.mean(loss_D_record)
writer.add_scalar('epoch/loss_epoch_train_D', float(loss_train_D_mean), epoch)
print(f'Average loss_D for epoch {epoch}: {loss_train_D_mean}')
#Checkpoint step
if epoch % args.checkpoint_step == 0 and epoch != 0:
if not os.path.isdir(args.save_model_path):
os.mkdir(args.save_model_path)
torch.save(model.module.state_dict(), os.path.join(args.save_model_path, 'latest_model.pth'))
torch.save(discriminator.module.state_dict(), os.path.join(args.save_model_path, 'latest_discriminator.pth'))
#Validation step
if epoch % args.validation_step == 0 and epoch != 0:
precision, overall_miou, stuffs_miou, things_miou = val(args, model, valloader, epoch)
#Check if the current model is the best one
if overall_miou > max_miou:
max_miou = overall_miou
os.makedirs(args.save_model_path, exist_ok=True)
torch.save(model.module.state_dict(),
os.path.join(args.save_model_path, 'best_model.pth'))
writer.add_scalar('epoch/precision_val', precision, epoch)
writer.add_scalar('epoch/overall miou val', overall_miou, epoch)
writer.add_scalar('epoch/stuffs miou val', stuffs_miou, epoch)
writer.add_scalar('epoch/things miou val', things_miou, epoch)
def val(args, model, dataloader, validation_run):
print(f"{'#'*10} VALIDATION {'#' * 10}")
#prepare info_file to save examples
info = json.load(open(args.data_target+"/"+args.info_file))
stuffs = info["stuffs"]
things = info["things"]
palette = {i if i!=19 else 255:info["palette"][i] for i in range(20)}
mean = torch.as_tensor(info["mean"])
if torch.cuda.is_available() and args.use_gpu:
mean = mean.cuda()
with torch.no_grad():
model.eval() #set the model in the evaluation mode
precision_record = []
hist = np.zeros((args.num_classes, args.num_classes))
for i, (image, label) in enumerate(tqdm(dataloader)):
label = label.type(torch.LongTensor)
label = label.long()
if torch.cuda.is_available() and args.use_gpu:
image = image.cuda()
label = label.cuda()
#get RGB predict image
predict = model(image).squeeze()
predict = reverse_one_hot(predict)
predict = np.array(predict.cpu())
#get RGB label image
label = label.squeeze()
label = np.array(label.cpu())
#compute per pixel accuracy
precision = compute_global_accuracy(predict, label)
hist += fast_hist(label.flatten(), predict.flatten(), args.num_classes)
path_to_save= args.save_model_path+f"/val_results/{validation_run}" #TODO os.join
#Save the image
if args.save_images and i % args.save_images_step == 0 :
index_image = get_index(int(i/args.save_images_step))
os.makedirs(path_to_save, exist_ok=True)
save_images(mean, palette, image, predict, label,
path_to_save+"/"+index_image+".png") #TODO crea il path con os.join
precision_record.append(precision)
precision = np.mean(precision_record)
miou_list = per_class_iu(hist)
overall_miou, stuffs_miou, things_miou = stuff_thing_miou(miou_list, stuffs, things)
print('precision per pixel for test: %.3f' % precision)
print('overall mIoU for validation: %.3f' % overall_miou)
print('stuffs mIoU for validation: %.3f' % stuffs_miou)
print('things mIoU for validation: %.3f' % things_miou)
print(f'mIoU per class: {miou_list}')
return precision, overall_miou, stuffs_miou, things_miou
if __name__ == '__main__':
params = [
'--epoch_start_i', '0',
'--checkpoint_step', '7',
'--validation_step', '7',
'--num_epochs', '50',
'--learning_rate', '2.5e-2',
'--data_target', '/content/drive/MyDrive/MLDL_Project/AdaptSegNet/data/Cityscapes',
'--data_source', '/content/drive/MyDrive/MLDL_Project/AdaptSegNet/data/GTA5',
'--num_workers', '8',
'--num_classes', '19',
'--cuda', '0',
'--batch_size', '6',
'--save_model_path', '/content/drive/MyDrive/MLDL_Project/PriorNet/models/',
'--tensorboard_logdir', '/content/drive/MyDrive/MLDL_Project/PriorNet/runs/',
'--mask_path', '/content/drive/MyDrive/MLDL_Project/AdaptSegNet/data/GTA5/masks',
'--context_path', 'resnet101',
'--optimizer', 'sgd',
]
main(params)