-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactive_utils.py
418 lines (350 loc) · 17.2 KB
/
active_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import random
import logging
import copy
import time
from utils import *
from configs import *
import os, psutil
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
import morpho_dataset
from allennlp.data.dataset_readers.dataset_utils.span_utils import bio_tags_to_spans
import numpy as np
class DataPool(object):
def __init__(self, texts, labels, init_num):
self.text_pool = np.array(texts)
self.label_pool = np.array(labels)
assert len(texts) == len(labels)
self.pool_size = len(texts)
# _l表示已标注数据集,_u表示未标注数据集
self.selected_texts = None
self.selected_labels = None
self.unselected_texts = None
self.unselected_labels = None
self.selected_idx = sorted(set(random.sample(list(range(self.pool_size)), init_num)))
self.unselected_idx = sorted(set(range(self.pool_size)) - set(self.selected_idx))
self.update_pool()
def update_pool(self):
self.selected_texts = self.text_pool[self.selected_idx]
self.selected_labels = self.label_pool[self.selected_idx]
self.unselected_texts = self.text_pool[self.unselected_idx]
self.unselected_labels = self.label_pool[self.unselected_idx]
def update_idx(self, new_selected_idx):
new_selected_idx = set(new_selected_idx)
self.selected_idx = sorted(set(self.selected_idx) | new_selected_idx)
self.unselected_idx = sorted(set(self.unselected_idx) - new_selected_idx)
def translate_select_idx(self, source_idx):
target_idx = [self.unselected_idx[idx] for idx in source_idx]
return target_idx
def update(self, unselected_idx):
unselected_idx = self.translate_select_idx(unselected_idx)
self.update_idx(unselected_idx)
self.update_pool()
def get_unselected_small(self, num):
num = round(num)
if num >= len(self.unselected_idx):
return list(range(len(self.unselected_idx))), self.unselected_texts, self.unselected_labels
idxs = list(range(len(self.unselected_idx)))
small_unselected_idx = sorted(random.sample(idxs, num))
small_unselected_labels = self.unselected_labels[small_unselected_idx]
small_unselected_texts = self.unselected_texts[small_unselected_idx]
return small_unselected_idx, small_unselected_texts, small_unselected_labels
def get_selected(self):
return self.selected_texts, self.selected_labels
def get_selected_id(self):
return self.selected_idx
def get_unselected_id(self):
return self.unselected_idx
def get_unselected(self):
return self.unselected_texts, self.unselected_labels
def update_labels(self, to_be_selected_ids, tobe_small_selected_idxs, predicted_labels, model_config):
perfect, changed = 0, 0
price = 0
ll = []
TP,FP,FN = 0,0,0
for id_to_be in to_be_selected_ids:
trans_id = np.array(self.unselected_idx)[tobe_small_selected_idxs[id_to_be]]
ll.append(trans_id)
price+=len(self.label_pool[trans_id])
true = bio_tags_to_spans(self.label_pool[trans_id])
pred = bio_tags_to_spans(predicted_labels[id_to_be])
for tag in true:
if tag in pred:
TP+=1
else:
FN+=1
for tag in pred:
if tag not in true:
FP+=1
if self.label_pool[trans_id] == predicted_labels[id_to_be]:
perfect+=1
else:
changed+=1
self.label_pool[trans_id] = predicted_labels[id_to_be]
return changed, perfect, (TP,FN,FP)
def replace_label(self, new_text, new_label):
for id in range(len(self.text_pool)):
if self.text_pool[id] == new_text:
self.label_pool[id] = new_label
break
def get_label_pool(self):
return self.label_pool
def get_text_pool(self):
return self.text_pool
class ActiveStrategy(object):
def __init__(self):
pass
def get_strategy(self, name):
if name == 'lc':
return self.least_confidence
elif name == 'mnlp':
return self.mnlp
else:
return self.random_sampling
@classmethod
def random_sampling(cls, texts, num):
idxs = list(range(len(texts)))
if num > len(texts):
return idxs
return random.sample(idxs, num)
@classmethod
def self_sampling(cls, model_config, viterbi_scores, texts):
tobe_selected_idxs = []
tobe_selected_scores = []
idxs = list(range(len(texts)))
# l,r = 0,0
for log_score,id in zip(viterbi_scores,idxs):
# r+=1
if log_score>=model_config.self_threshold:
tobe_selected_idxs.append(id)
tobe_selected_scores.append(log_score)
# l+=1
# print(l,r,log_score)
return tobe_selected_idxs, tobe_selected_scores
@classmethod
def lc_sampling(cls, viterbi_scores, texts, select_num):
"""
Least Confidence
"""
select_num = select_num if len(texts) >= select_num else len(texts)
seq_lens = np.array([len(text) for text in texts])
scores = np.array(viterbi_scores)
scores = scores/seq_lens
tobe_selected_idxs = np.argsort(scores)[:select_num]
tobe_selected_scores = scores[tobe_selected_idxs]
return tobe_selected_idxs, tobe_selected_scores
@classmethod
def mc_sampling(cls, viterbi_scores, texts, select_num):
"""
Least Confidence
"""
select_num = select_num if len(texts) >= select_num else len(texts)
seq_lens = np.array([len(text) for text in texts])
scores = np.array(viterbi_scores)
scores = scores/seq_lens
tobe_selected_idxs = np.argsort(scores)[::-1][:select_num]
tobe_selected_scores = scores[tobe_selected_idxs]
return tobe_selected_idxs, tobe_selected_scores
@classmethod
def mnlp_sampling(cls, mnlp_scores, texts, select_num):
select_num = select_num if len(texts) >= select_num else len(texts)
scores = np.array(mnlp_scores)
tobe_selected_idxs = np.argsort(scores)[:select_num]
tobe_selected_scores = scores[tobe_selected_idxs]
price = len(tobe_selected_idxs)
return tobe_selected_idxs, tobe_selected_scores, price
@classmethod
def total_token_entropy(cls, prob):
epsilon = 1e-9
prob += epsilon
tte = np.einsum('ij->', -np.log(prob) * prob)
return tte
@classmethod
def tte_sampling(cls, probs, texts, select_num):
"""
Total token entropy sampling.
"""
select_num = select_num if len(texts) >= select_num else len(texts)
tte_scores = np.array([cls.total_token_entropy(prob[:len(text), :])
for prob, text in zip(probs, texts)])
tobe_selected_idxs = np.argsort(tte_scores)[-select_num:]
tobe_selected_scores = tte_scores[tobe_selected_idxs]
return tobe_selected_idxs, tobe_selected_scores
@classmethod
def te_sampling(cls, probs, texts, select_num):
select_num = select_num if len(texts) >= select_num else len(texts)
te_scores = np.array([cls.total_token_entropy(prob[:len(text), :])/len(text)
for prob, text in zip(probs, texts)])
tobe_selected_idxs = np.argsort(te_scores)[-select_num:]
tobe_selected_scores = te_scores[tobe_selected_idxs]
return tobe_selected_idxs, tobe_selected_scores
# 8) тут мы случайным образом выбираем часть датасета и после делаем ленивую разметку и отбрасываем по threshold данные
# В одной из статей прочитал сравнение методов и оказалось, что рандом чуть ли не лучший алгоритм выбора данных,
# там сравнивали всякие метрики уверенности и выбирали самые славбые примеры для разметки
# а в итоге рандом работал лучше
@classmethod
def random_sampling_precision(cls, scores, num, threshold):
idxs = list(range(len(scores)))
bad_examples = []
if num > len(scores):
samples = idxs
else:
samples = random.sample(idxs, num)
res = []
price = len(samples)
perfect, not_perfect = 0,0
for id in samples:
if scores[id] > threshold:
if scores[id] == 1:
perfect += 1
else:
not_perfect += 1
res.append(id)
else:
bad_examples.append(id)
tobe_selected_idxs = res
tobe_selected_scores = scores[tobe_selected_idxs]
return tobe_selected_idxs, tobe_selected_scores, bad_examples, price, perfect, not_perfect
@classmethod
def sampling_precision(cls, tobe_selected_idxs, texts, scores, threshold, step):
thrown_away = 0
price = 0
res = []
scores_res = []
perfect, not_perfect = 0, 0
for id in tobe_selected_idxs:
if len(texts[id]) + price < step:
price += len(texts[id])
if scores[id] >= threshold:
if scores[id] == 1:
perfect += len(texts[id])
else:
not_perfect += len(texts[id])
res.append(id)
scores_res.append(scores[id])
else:
thrown_away += len(texts[id])
return res, scores_res, thrown_away, perfect, not_perfect, price
def predict_precision_span(model, args, train_m, model_config, texts, labels, embedings):
dataset = create_temp_dataset(model_config, train_m, texts, embedings, labels)
tags, _ = model.get_tags(dataset, args)
scores = []
for label, text, tag in zip(labels, texts, tags):
pr = 0
if len(text) != len(label) or len(label) != len(tag):
scores.append(pr)
else:
pr, re, f1 = model.f1_score_span([label], [tag])
scores.append(pr)
return np.array(scores), np.array(tags)
def key_by_value(d,value):
for key, val in d.items():
if val == value:
return key
def get_conll_file(file, model_config, sentences, embedings, labels):
embed_path = "data/teprorary" + str(model_config.number)+"/" + file + "_vectors.txt"
conll_path = "data/teprorary" + str(model_config.number)+"/" + file + ".txt"
if not os.path.exists("data/teprorary"+str(model_config.number)+"/"):
os.makedirs("data/teprorary"+str(model_config.number)+"/")
if os.path.exists(conll_path):
os.remove(conll_path)
if os.path.exists(embed_path):
os.remove(embed_path)
if not os.path.exists(embed_path):
with open(embed_path, 'w'):
pass
if not os.path.exists(conll_path):
with open(conll_path, 'w'):
pass
file_object = open(conll_path, 'a')
for sent,lable,embed in zip(sentences, labels, embedings):
for s,l in zip(sent,lable):
file_object.write("{}\t_\t_\t{}\n".format(s, l))
file_object.write("\n")
file_object.close()
with open(embed_path, 'wb') as fp:
pickle.dump(list(embedings), fp)
def create_temp_dataset(model_config, train_m, texts, embedings, labels ):
get_conll_file("temp", model_config, texts, embedings, labels)
embed_path = "data/teprorary" + str(model_config.number)+"/" + "temp" + "_vectors.txt"
conll_path = "data/teprorary" + str(model_config.number)+"/" + "temp" + ".txt"
dataset = morpho_dataset.MorphoDataset(conll_path, train=train_m, shuffle_batches=False, bert_embeddings_filename=embed_path)
return dataset
def active_learing_sampling(model, dataPool, model_config, args,train_m, train, sum_prices, iterations_of_learning):
unselected_ids = dataPool.get_unselected_id()
small_unselected_ids, small_unselected_texts, small_unselected_labels = dataPool.get_unselected_small(model_config.step_budget)
small_unselected_embedings, _ = get_embeding( np.array(unselected_ids)[small_unselected_ids], small_unselected_labels,
train['embed'])
tobe_selected_idxs = None
if model_config.select_strategy == STRATEGY.LC:
dataset = create_temp_dataset(model_config, train_m, small_unselected_texts, small_unselected_embedings, small_unselected_labels)
tags, scores = model.get_tags(dataset, args)
tobe_selected_idxs, tobe_selected_scores = ActiveStrategy.lc_sampling(scores, small_unselected_embedings,
model_config.step_budget)
elif model_config.select_strategy == STRATEGY.MC:
dataset = create_temp_dataset(model_config, train_m, small_unselected_texts, small_unselected_embedings, small_unselected_labels)
tags, scores = model.get_tags(dataset, args)
tobe_selected_idxs, tobe_selected_scores = ActiveStrategy.mc_sampling(scores, small_unselected_embedings,
model_config.step_budget)
elif model_config.select_strategy == STRATEGY.RAND:
tobe_selected_idxs = ActiveStrategy.random_sampling(small_unselected_embedings,
model_config.step_budget)
elif model_config.select_strategy == STRATEGY.SELF:
dataset = create_temp_dataset(model_config, train_m, small_unselected_texts, small_unselected_embedings, small_unselected_labels)
tags, scores = model.get_tags(dataset, args)
tobe_selected_idxs, tobe_selected_scores = ActiveStrategy.self_sampling(model_config, scores, small_unselected_embedings)
perfect, not_perfect, thrown_away = 0, 0, 0
price = 0
tpfnfp = (0,0,0)
if model_config.label_strategy == STRATEGY.LAZY: #разметка проверяется оракулом, испольщуем PREDICT, а не GOLD
scores, predicted_labels = predict_precision_span(model, args, train_m, model_config, small_unselected_texts, small_unselected_labels, small_unselected_embedings)
tobe_selected_idxs, tobe_selected_scores, thrown_away, perfect, not_perfect, price = ActiveStrategy.sampling_precision(tobe_selected_idxs=tobe_selected_idxs, texts=small_unselected_texts, scores=scores, threshold=model_config.threshold, step=min(model_config.step_budget, model_config.budget - sum_prices))
changed, not_changed, tpfnfp = dataPool.update_labels(tobe_selected_idxs, small_unselected_ids, predicted_labels, model_config)
tobe_selected_idxs = np.array(small_unselected_ids)[tobe_selected_idxs]
elif model_config.label_strategy == STRATEGY.NORMAL: #оракул размечает используем GOLD разметку
tobe_selected_idxs_copy = tobe_selected_idxs.copy()
tobe_selected_idxs = []
for id in tobe_selected_idxs_copy:
cost = len(small_unselected_embedings[id])
if price + cost > min(model_config.step_budget, model_config.budget - sum_prices):
end_marker = True
# break
else:
tobe_selected_idxs.append(id)
price += cost
tobe_selected_idxs = np.array(small_unselected_ids)[tobe_selected_idxs]
sum_prices += price
dataPool.update_pool()
dataPool.update(tobe_selected_idxs)
selected_texts,selected_labels = dataPool.get_selected()
stat_in_file(model_config.loginfo,
["Selection", iterations_of_learning, "len(selected_texts):", len(selected_texts), "fullcost", compute_price(selected_labels),
"iter_spent_budget:", price, "not_porfect:", not_perfect, "thrown_away:", thrown_away, "perfect:", perfect, "total_spent_budget:", sum_prices,
"memory", model_config.p.memory_info().rss/1024/1024, "tpfnfp per iter", tpfnfp])
return dataPool, price, perfect, not_perfect, sum_prices
def init_data(dataPool,model_config):
budget_init = model_config.init_budget
sum_price_init, price_init = 0, 0
unselected_texts, unselected_labels = dataPool.get_unselected()
while budget_init > 10 and len(unselected_texts) > 1:
unselected_texts, unselected_labels = dataPool.get_unselected()
tobe_selected_idxs = ActiveStrategy.random_sampling(unselected_texts, model_config.step_budget)
tobe_selected_idxs, budget_init, price_init = choose_ids_by_price(tobe_selected_idxs, budget_init,
unselected_texts)
sum_price_init += price_init
dataPool.update_pool()
dataPool.update(tobe_selected_idxs)
return dataPool
def stat_in_file(path, stats):
with open(path, 'a') as f:
writer = csv.writer(f)
writer.writerow(stats)
def clear_old_model(path):
try:
os.remove(path)
except Exception:
pass
def softmax(x):
y = np.exp(x - np.max(x))
f_x = y / np.sum(np.exp(x))
return f_x