-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigs.py
82 lines (77 loc) · 3.25 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from enums import STRATEGY
import psutil, os
class ModelConfig(object):
def __init__(self):
self.embedding_dim = 768
self.hidden_dim = 256
self.tag_to_ix = {"<START>": 0, "<STOP>": 1, 'B-LOC': 2, 'I-LOC': 3, 'B-PER': 4, 'I-PER': 5, 'B-ORG': 6, 'I-ORG': 7, 'B-MISC': 8, 'I-MISC': 9, "O": 10}
self.learning_rate = 0.003
self.init_budget = 5000
self.step_budget = 500
self.stop_criteria_steps = 14
self.budget = 15000
self.select_strategy = STRATEGY.PRECISION
self.label_strategy = ""
self.threshold = 0.5
self.select_strategy = STRATEGY.RAND
self.embed_strategy = 'bert'
self.save_model_path = "saved_models/model.pth"
self.loginfo = "./logs/loginfo.csv"
self.p = psutil.Process(os.getpid())
self.batch_size = 8
self.dropout = 0.5
self.number = 0
self.process = 1
self.oracle_metric = STRATEGY.NORMAL
self.self_threshold = 0
# self.lstm_size = 256
# self.lstm_layer = 1
# self.vocab_size = 30000
# self.use_pretrained = True
# self.embed_strategy= 'bert'
# self.num_oov_buckets = 1
# self.embed_path = ["data/english/embeding/train_vectors","data/english/embeding/test_vectors","data/english/embeding/dev_vectors"]
# self.vectors = []
# self.train_sentences = 'data/english/train_vectors_small.txt'
# self.vocab = './data/chinese/vocab.txt'
# self.positive_tags = ['B-LOC', 'I-LOC', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-MISC', 'I-MISC','O']
# self.tag_to_ix = {"<START>": 0, "<STOP>": 1, 'B-LOC': 2, 'I-LOC': 3, 'B-PER': 4, 'I-PER': 5, 'B-ORG': 6, 'I-ORG': 7, 'B-MISC': 8, 'I-MISC': 9, "O": 10}
# self.path = 'logs/loginfo.csv'
# self.positive_ids = None
# self.tags = None
# self.buffer_size = 15000
# self.epochs = 10
# self.valid_mode = 'partial'
# #the amount of data to labelling in one step
# self.steps_budget= 200
# #Gradually increasing the step size
# self.delta_step = 5
# self.threshold = 0.5
# self.batch_size = 8
# self.seed = 10
# self.stop_criteria_quality = 0.8
# self.learning_rate = 0.0001
# self.save_checkpoints_steps = 3000
# self.model_dir = 'results_prtecision/model_chinese'
# self.model_dir = None
class ActiveConfig(object):
def __init__(self, pool_size, select_strategy, budget, step, select_epochs, total_epochs):
self.pool_size = pool_size
self.total_num = None
self.select_num = None
self.budget = budget
self.step_budget = 200
self.delta_step = 0
self.step = step
self.select_strategy = select_strategy
self.select_epochs = select_epochs # the train epochs each time new samples are added
self.total_epochs = total_epochs # the train epochs from scratch when finish sampling
self.pretrain_epochs = 2
self.step_unselected_size = 10
self.update()
def update(self):
"""
When you reset any parameters, call this method to update the relevant parameters.
"""
self.total_num = int(self.budget)
self.select_num = int(self.step)