-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_active.py
209 lines (170 loc) · 9.63 KB
/
show_active.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pandas as pd
import codecs
import os
import shutil
import csv
import json
import random
import pylab
from configs import ModelConfig, ActiveConfig
import matplotlib.pyplot as plt
from show_simple import read_file_simple
def read_from_csv(path):
with open(path, "r") as f:
reader = csv.reader(f)
stats = []
for line in reader:
stats.append(line)
return stats
def read_file_active(path, scale):
experiments = []
loginfo = read_from_csv(path)
for line in loginfo:
if len(line) > 1:
if line[0] == "BEGIN":
stat = {"strategy": line[2], "label_strategy": line[4],"budget":line[6],"init_budget":line[8],"step_budget":line[10],
"threshold": line[12], "seed": line[14], "active_iteration": [], "epoch_iter": []}
budget = float(line[6])
init_budget = float(line[8])
step_budget= float(line[10])
if line[2] == "STRATEGY.SELF":
step_budget = 500
spent_budget = init_budget
fullcost = init_budget
if line[0] == "TrainInitFinished":
stat['active_iteration'].append({"bestf1dev": float(line[12]), "bestprecisiondev": float(line[8]), "bestrecalldev": float(line[10]),"budget": budget, "init_budget": init_budget, "step_budget":step_budget ,"spent_budget":spent_budget})
if line[0] == "Selection":
added_price = float(line[5]) - fullcost
fullcost = float(line[5])
spentprice = float(line[15])
spent_budget = spent_budget+step_budget*scale
if line[0] == "IterFinished":
stat['active_iteration'].append({"bestf1dev": float(line[21]), "bestprecisiondev": float(line[17]), "bestrecalldev": float(line[19]),"added_price": added_price,"budget": budget, "init_budget": init_budget, "step_budget":step_budget ,"spent_budget":spent_budget})
if line[0] == "result":
stat.update({"f1test": float(line[12]), "precisiontest": float(line[8]), "recalltest": float(line[10]), "cost_of_train": fullcost,
"devf1": float(line[18]), "devprecision": float(line[14]), "devrecall": float(line[16]), "spentprice": spentprice})
experiments.append(stat)
return pd.DataFrame(experiments)
def find_new_number(directory):
result = 0
for filename in os.listdir(directory):
try:
num = int(filename[:2])
result = num if num > result else result
except Exception:
pass
if result+1<10:
result = "0"+str(result+1)
else:
result = str(result+1)
return result
def random_color():
levels = range(32,256,32)
return tuple(random.choice(levels) for _ in range(3))
if __name__ == '__main__':
directory_report = "report/active/"
shutil.rmtree(directory_report)
Title = {"1":"active,LC",
"2":"lazy,LC,0.75",
"3":"lazy,RAND,0.75",
"4":"lazy,MC,0.75",
"5":"lazy,LC,0.5",
"6":"lazy,LC,0.25",
"7":"self,LC,0",
"8":"self,RAND,0",
"9":"self,MC,0",
"10":"self paper 0,5",
"11":"self paper 0,995",
"12":"self paper 0,999",
"13":"self paper 0,8",
"14":"<>"}
for num in ['1','2','3','4','5','6','8','9']:
model_config = ModelConfig()
path_active = "logs/clusterDialog/log_exp_" + num + ".txt"
if not os.path.exists(directory_report):
os.makedirs(directory_report)
new_plot_num = find_new_number(directory_report)
path_simple = "logs/simple/paper_simple_learning_dev.csv"
experiments = read_file_simple(path_simple)
# print(experiments)
experiments_simple = experiments.groupby('budget', as_index=False).agg({'f1': ['mean', 'std']})
colors = [[0, 0.4470, 0.7410],[0, 0, 1],[0.8500, 0.3250, 0.0980],[0, 0.5, 0],[1, 0, 0],[0.4940, 0.1840, 0.5560],[0, 0.75, 0.75],
[0.4660, 0.6740, 0.1880],[0.75, 0, 0.75],[0.3010, 0.7450, 0.9330],[0.75, 0.75, 0],[0.6350, 0.0780, 0.1840],[0.25, 0.25, 0.25]]
i = 0
scales = [0.1, 0.125, 0.2, 0.25, 0.33, 0.4, 0.5, 1]
pli = 1
plt.style.use('ggplot')
####DRAWING SEPARATELY and in a file
for scale in scales:
experiments = read_file_active(path_active, scale)
iterations_c = experiments["active_iteration"]
iterations = []
for lis in iterations_c:
for it in lis:
iterations.append(it)
iterations = pd.DataFrame(iterations)
iterations = iterations.groupby(['budget', 'init_budget','step_budget', 'spent_budget'],as_index=False).agg({'added_price': ['mean','std'],'bestf1dev': ['mean','std'], 'bestprecisiondev': ['mean','std'], 'bestrecalldev': ['mean','std']})
experiments = experiments.groupby(['budget','init_budget','step_budget']).agg(
{'devf1': ['mean', 'std'], 'devprecision': ['mean', 'std'], 'devrecall': ['mean', 'std']})
init_budget, budget, step_budget = pd.unique(iterations['init_budget']),pd.unique(iterations['budget']),pd.unique(iterations['step_budget'])
plt.figure(figsize=(22,16))
filt = max(budget)*scale+max(init_budget)+1000
experiments_simple_filt = experiments_simple[experiments_simple['budget']<=filt]
plt.plot(experiments_simple_filt['budget'], experiments_simple_filt[('f1','mean')],label="simple", marker="o", color="black")
plt.fill_between(experiments_simple_filt['budget'],experiments_simple_filt[('f1','mean')]+experiments_simple_filt[('f1','std')],experiments_simple_filt[('f1','mean')]- experiments_simple_filt[('f1','std')],alpha=.2)
j=0
for i in init_budget:
for s in step_budget:
df = iterations[iterations['init_budget']==i]
df = df[df['step_budget']==s]
plt.plot(df['spent_budget'],df[('bestf1dev','mean')], label=str(i)+" "+str(s), marker="o", color=colors[j])
# plt.plot(df['spent_budget'], df[('added_price', 'mean')], label=str(i), marker="o", color=colors[j])
j+=1
# plt.fill_between(df['spent_budget'],df[('added_price','mean')]+df[('added_price','std')],df[('added_price','mean')]- df[('added_price','std')],alpha=.2)
plt.fill_between(df['spent_budget'],df[('bestf1dev','mean')]+df[('bestf1dev','std')],df[('bestf1dev','mean')]- df[('bestf1dev','std')],alpha=.2)
# plt.errorbar(df['spent_budget'],df[('bestf1dev','mean')], df[('bestf1dev','std')], linestyle='None', marker='^')
plt.xlabel('spent_budget')
plt.ylabel('bestf1dev')
plt.legend(loc='best')
plt.title(Title[num] + " with scale = "+str(scale))
# plt.show()
plt.savefig(directory_report+num+"_"+Title[num] +" "+ str(scale)+'.png')
####DRAWING on a one picture
for scale in scales:
pylab.subplot(4, 2, pli)
experiments = read_file_active(path_active,scale)
iterations_c = experiments["active_iteration"]
iterations = []
for lis in iterations_c:
for it in lis:
iterations.append(it)
iterations = pd.DataFrame(iterations)
iterations = iterations.groupby(['budget', 'init_budget','step_budget', 'spent_budget'],as_index=False).agg({'added_price': ['mean','std'], 'bestf1dev': ['mean','std'], 'bestprecisiondev': ['mean','std'], 'bestrecalldev': ['mean','std']})
experiments = experiments.groupby(['budget','init_budget','step_budget']).agg(
{'devf1': ['mean', 'std'], 'devprecision': ['mean', 'std'], 'devrecall': ['mean', 'std']})
init_budget, budget, step_budget = pd.unique(iterations['init_budget']),pd.unique(iterations['budget']),pd.unique(iterations['step_budget'])
filt = max(budget)*scale+max(init_budget)+1000
experiments_simple_filt = experiments_simple[experiments_simple['budget']<=filt]
plt.plot(experiments_simple_filt['budget'], experiments_simple_filt[('f1','mean')],label="simple", marker="o", color="black")
plt.fill_between(experiments_simple_filt['budget'],experiments_simple_filt[('f1','mean')]+experiments_simple_filt[('f1','std')],experiments_simple_filt[('f1','mean')]- experiments_simple_filt[('f1','std')],alpha=.2)
j = 0
for i in init_budget:
for s in step_budget:
df = iterations[iterations['init_budget']==i]
df = df[df['step_budget']==s]
# print(df)
pylab.plot(df['spent_budget'], df[('bestf1dev','mean')], label=str(i)+" "+str(s), marker="o", color=colors[j])
# pylab.plot(df['spent_budget'], df[('added_price','mean')], label=str(i), marker="o", color=colors[j])
j+=1
pylab.fill_between(df['spent_budget'],df[('bestf1dev','mean')]+df[('bestf1dev','std')],df[('bestf1dev','mean')]- df[('bestf1dev','std')],alpha=.2)
# plt.errorbar(df['spent_budget'],df[('bestf1dev','mean')], df[('bestf1dev','std')], linestyle='None', marker='^')
pylab.xlabel('spent_budget')
pylab.ylabel('bestf1dev')
pylab.legend(loc='best')
pylab.title(Title[num] + " with scale = "+str(scale))
# plt.show()
# pylab.savefig("repor t/active "+ str(scale)+'.png')
pli+=1
pylab.suptitle(Title[num])
pylab.savefig(directory_report+num+"_"+Title[num]+"_ALL.png")
# print(experiments)