-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtagger.py
executable file
·646 lines (562 loc) · 37.2 KB
/
tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#!/usr/bin/env python3
# coding=utf-8
#
# Copyright 2019 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
"""Nested NER training and evaluation in TensorFlow."""
from active_utils import *
import json
import os
import sys
import fasttext
import numpy as np
import tensorflow as tf
from gensim.models import word2vec
import morpho_dataset
from configs import *
import shutil
class Network:
def __init__(self, threads, seed=42):
# Create an empty graph and a session
graph = tf.Graph()
graph.seed = seed
self.session = tf.Session(graph = graph, config=tf.ConfigProto(inter_op_parallelism_threads=threads,
intra_op_parallelism_threads=threads))
def construct(self, args, num_forms, num_form_chars, num_lemmas, num_lemma_chars, num_pos,
pretrained_form_we_dim, pretrained_lemma_we_dim, pretrained_fasttext_dim,
num_tags, tag_bos, tag_eow, pretrained_bert_dim, pretrained_flair_dim, pretrained_elmo_dim,
predict_only):
with self.session.graph.as_default():
# Inputs
self.sentence_lens = tf.placeholder(tf.int32, [None], name="sentence_lens")
self.form_ids = tf.placeholder(tf.int32, [None, None], name="form_ids")
self.lemma_ids = tf.placeholder(tf.int32, [None, None], name="lemma_ids")
self.pos_ids = tf.placeholder(tf.int32, [None, None], name="pos_ids")
self.pretrained_form_wes = tf.placeholder(tf.float32, [None, None, pretrained_form_we_dim], name="pretrained_form_wes")
self.pretrained_lemma_wes = tf.placeholder(tf.float32, [None, None, pretrained_lemma_we_dim], name="pretrained_lemma_wes")
self.pretrained_fasttext_wes = tf.placeholder(tf.float32, [None, None, pretrained_fasttext_dim], name="fasttext_wes")
self.pretrained_bert_wes = tf.placeholder(tf.float32, [None, None, pretrained_bert_dim], name="bert_wes")
self.pretrained_flair_wes = tf.placeholder(tf.float32, [None, None, pretrained_flair_dim], name="flair_wes")
self.pretrained_elmo_wes = tf.placeholder(tf.float32, [None, None, pretrained_elmo_dim], name="elmo_wes")
self.tags = tf.placeholder(tf.int32, [None, None], name="tags")
self.is_training = tf.placeholder(tf.bool, [])
self.learning_rate = tf.placeholder(tf.float32, [])
if args.including_charseqs:
self.form_charseqs = tf.placeholder(tf.int32, [None, None], name="form_charseqs")
self.form_charseq_lens = tf.placeholder(tf.int32, [None], name="form_charseq_lens")
self.form_charseq_ids = tf.placeholder(tf.int32, [None,None], name="form_charseq_ids")
self.lemma_charseqs = tf.placeholder(tf.int32, [None, None], name="lemma_charseqs")
self.lemma_charseq_lens = tf.placeholder(tf.int32, [None], name="lemma_charseq_lens")
self.lemma_charseq_ids = tf.placeholder(tf.int32, [None,None], name="lemma_charseq_ids")
# RNN Cell
if args.rnn_cell == "LSTM":
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell
elif args.rnn_cell == "GRU":
rnn_cell = tf.nn.rnn_cell.GRUCell
else:
raise ValueError("Unknown rnn_cell {}".format(args.rnn_cell))
inputs = []
# Trainable embeddings for forms
form_embeddings = tf.get_variable("form_embeddings", shape=[num_forms, args.we_dim], dtype=tf.float32)
inputs.append(tf.nn.embedding_lookup(form_embeddings, self.form_ids))
# Trainable embeddings for lemmas
lemma_embeddings = tf.get_variable("lemma_embeddings", shape=[num_lemmas, args.we_dim], dtype=tf.float32)
inputs.append(tf.nn.embedding_lookup(lemma_embeddings, self.lemma_ids))
# POS encoded as one-hot vectors
inputs.append(tf.one_hot(self.pos_ids, num_pos))
# Pretrained embeddings for forms
if args.form_wes_model:
inputs.append(self.pretrained_form_wes)
# Pretrained embeddings for lemmas
if args.lemma_wes_model:
inputs.append(self.pretrained_lemma_wes)
# Fasttext form embeddings
if args.fasttext_model:
inputs.append(self.pretrained_fasttext_wes)
# BERT form embeddings
if pretrained_bert_dim:
inputs.append(self.pretrained_bert_wes)
# Flair form embeddings
if pretrained_flair_dim:
inputs.append(self.pretrained_flair_wes)
# ELMo form embeddings
if pretrained_elmo_dim:
inputs.append(self.pretrained_elmo_wes)
# Character-level form embeddings
if args.including_charseqs:
# Generate character embeddings for num_form_chars of dimensionality args.cle_dim.
character_embeddings = tf.get_variable("form_character_embeddings",
shape=[num_form_chars, args.cle_dim],
dtype=tf.float32)
# Embed self.form_charseqs (list of unique form in the batch) using the character embeddings.
characters_embedded = tf.nn.embedding_lookup(character_embeddings, self.form_charseqs)
# Use tf.nn.bidirectional.rnn to process embedded self.form_charseqs
# using a GRU cell of dimensionality args.cle_dim.
_, (state_fwd, state_bwd) = tf.nn.bidirectional_dynamic_rnn(
tf.nn.rnn_cell.GRUCell(args.cle_dim), tf.nn.rnn_cell.GRUCell(args.cle_dim),
characters_embedded, sequence_length=self.form_charseq_lens, dtype=tf.float32, scope="form_cle")
# Sum the resulting fwd and bwd state to generate character-level form embedding (CLE)
# of unique forms in the batch.
cle = tf.concat([state_fwd, state_bwd], axis=1)
# Generate CLEs of all form in the batch by indexing the just computed embeddings
# by self.form_charseq_ids (using tf.nn.embedding_lookup).
cle_embedded = tf.nn.embedding_lookup(cle, self.form_charseq_ids)
# Concatenate the form embeddings (computed above in inputs) and the CLE (in this order).
inputs.append(cle_embedded)
# Character-level lemma embeddings
if args.including_charseqs:
character_embeddings = tf.get_variable("lemma_character_embeddings",
shape=[num_lemma_chars, args.cle_dim],
dtype=tf.float32)
characters_embedded = tf.nn.embedding_lookup(character_embeddings, self.lemma_charseqs)
_, (state_fwd, state_bwd) = tf.nn.bidirectional_dynamic_rnn(
tf.nn.rnn_cell.GRUCell(args.cle_dim), tf.nn.rnn_cell.GRUCell(args.cle_dim),
characters_embedded, sequence_length=self.lemma_charseq_lens, dtype=tf.float32, scope="lemma_cle")
cle = tf.concat([state_fwd, state_bwd], axis=1)
cle_embedded = tf.nn.embedding_lookup(cle, self.lemma_charseq_ids)
inputs.append(cle_embedded)
# Concatenate inputs
inputs = tf.concat(inputs, axis=2)
# Dropout
inputs_dropout = tf.layers.dropout(inputs, rate=args.dropout, training=self.is_training)
# Computation
hidden_layer_dropout = inputs_dropout # first layer is input
for i in range(args.rnn_layers):
(hidden_layer_fwd, hidden_layer_bwd), _ = tf.nn.bidirectional_dynamic_rnn(
rnn_cell(args.rnn_cell_dim), rnn_cell(args.rnn_cell_dim),
hidden_layer_dropout, sequence_length=self.sentence_lens, dtype=tf.float32,
scope="RNN-{}".format(i))
hidden_layer = tf.concat([hidden_layer_fwd, hidden_layer_bwd], axis=2)
if i == 0: hidden_layer_dropout = 0
hidden_layer_dropout += tf.layers.dropout(hidden_layer, rate=args.dropout, training=self.is_training)
# Decoders
if args.decoding == "CRF": # conditional random fields
output_layer = tf.layers.dense(hidden_layer_dropout, num_tags)
weights = tf.sequence_mask(self.sentence_lens, dtype=tf.float32)
log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(
output_layer, self.tags, self.sentence_lens)
loss = tf.reduce_mean(-log_likelihood)
self.predictions, viterbi_score = tf.contrib.crf.crf_decode(
output_layer, transition_params, self.sentence_lens)
self.predictions_training = self.predictions
elif args.decoding == "ME": # vanilla maximum entropy
output_layer = tf.layers.dense(hidden_layer_dropout, num_tags)
weights = tf.sequence_mask(self.sentence_lens, dtype=tf.float32)
if args.label_smoothing:
gold_labels = tf.one_hot(self.tags, num_tags) * (1 - args.label_smoothing) + args.label_smoothing / num_tags
loss = tf.losses.softmax_cross_entropy(gold_labels, output_layer, weights=weights)
else:
loss = tf.losses.sparse_softmax_cross_entropy(self.tags, output_layer, weights=weights)
self.predictions = tf.argmax(output_layer, axis=2)
self.predictions_training = self.predictions
elif args.decoding in ["LSTM", "seq2seq"]: # Decoder
# Generate target embeddings for target chars, of shape [target_chars, args.char_dim].
tag_embeddings = tf.get_variable("tag_embeddings", shape=[num_tags, args.we_dim], dtype=tf.float32)
# Embed the target_seqs using the target embeddings.
tags_embedded = tf.nn.embedding_lookup(tag_embeddings, self.tags)
decoder_rnn_cell = rnn_cell(args.rnn_cell_dim)
# Create a `decoder_layer` -- a fully connected layer with
# target_chars neurons used in the decoder to classify into target characters.
decoder_layer = tf.layers.Dense(num_tags)
sentence_lens = self.sentence_lens
max_sentence_len = tf.reduce_max(sentence_lens)
tags = self.tags
# The DecoderTraining will be used during training. It will output logits for each
# target character.
class DecoderTraining(tf.contrib.seq2seq.Decoder):
@property
def batch_size(self): return tf.shape(hidden_layer_dropout)[0]
@property
def output_dtype(self): return tf.float32 # Type for logits of target characters
@property
def output_size(self): return num_tags # Length of logits for every output
@property
def tag_eow(self): return tag_eow
def initialize(self, name=None):
states = decoder_rnn_cell.zero_state(self.batch_size, tf.float32)
inputs = [tf.nn.embedding_lookup(tag_embeddings, tf.fill([self.batch_size], tag_bos)), hidden_layer_dropout[:,0]]
inputs = tf.concat(inputs, axis=1)
if args.decoding == "seq2seq":
predicted_eows = tf.zeros([self.batch_size], dtype=tf.int32)
inputs = (inputs, predicted_eows)
finished = sentence_lens <= 0
return finished, inputs, states
def step(self, time, inputs, states, name=None):
if args.decoding == "seq2seq":
inputs, predicted_eows = inputs
outputs, states = decoder_rnn_cell(inputs, states)
outputs = decoder_layer(outputs)
next_input = [tf.nn.embedding_lookup(tag_embeddings, tags[:,time])]
if args.decoding == "seq2seq":
predicted_eows += tf.to_int32(tf.equal(tags[:, time], self.tag_eow))
indices = tf.where(tf.one_hot(tf.minimum(predicted_eows, max_sentence_len - 1), tf.reduce_max(predicted_eows) + 1))
next_input.append(tf.gather_nd(hidden_layer_dropout, indices))
else:
next_input.append(hidden_layer_dropout[:,tf.minimum(time + 1, max_sentence_len - 1)])
next_input = tf.concat(next_input, axis=1)
if args.decoding == "seq2seq":
next_input = (next_input, predicted_eows)
finished = sentence_lens <= predicted_eows
else:
finished = sentence_lens <= time + 1
return outputs, states, next_input, finished
output_layer, _, prediction_training_lens = tf.contrib.seq2seq.dynamic_decode(DecoderTraining())
self.predictions_training = tf.argmax(output_layer, axis=2, output_type=tf.int32)
weights = tf.sequence_mask(prediction_training_lens, dtype=tf.float32)
if args.label_smoothing:
gold_labels = tf.one_hot(self.tags, num_tags) * (1 - args.label_smoothing) + args.label_smoothing / num_tags
loss = tf.losses.softmax_cross_entropy(gold_labels, output_layer, weights=weights)
else:
loss = tf.losses.sparse_softmax_cross_entropy(self.tags, output_layer, weights=weights)
# The DecoderPrediction will be used during prediction. It will
# directly output the predicted target characters.
class DecoderPrediction(tf.contrib.seq2seq.Decoder):
@property
def batch_size(self): return tf.shape(hidden_layer_dropout)[0]
@property
def output_dtype(self): return tf.int32 # Type for predicted target characters
@property
def output_size(self): return 1 # Will return just one output
@property
def tag_eow(self): return tag_eow
def initialize(self, name=None):
states = decoder_rnn_cell.zero_state(self.batch_size, tf.float32)
inputs = [tf.nn.embedding_lookup(tag_embeddings, tf.fill([self.batch_size], tag_bos)), hidden_layer_dropout[:,0]]
inputs = tf.concat(inputs, axis=1)
if args.decoding == "seq2seq":
predicted_eows = tf.zeros([self.batch_size], dtype=tf.int32)
inputs = (inputs, predicted_eows)
finished = sentence_lens <= 0
return finished, inputs, states
def step(self, time, inputs, states, name=None):
if args.decoding == "seq2seq":
inputs, predicted_eows = inputs
outputs, states = decoder_rnn_cell(inputs, states)
outputs = decoder_layer(outputs)
outputs = tf.argmax(outputs, axis=1, output_type=self.output_dtype)
next_input = [tf.nn.embedding_lookup(tag_embeddings, outputs)]
if args.decoding == "seq2seq":
predicted_eows += tf.to_int32(tf.equal(outputs, self.tag_eow))
indices = tf.where(tf.one_hot(tf.minimum(predicted_eows, max_sentence_len - 1), tf.reduce_max(predicted_eows) + 1))
next_input.append(tf.gather_nd(hidden_layer_dropout, indices))
else:
next_input.append(hidden_layer_dropout[:,tf.minimum(time + 1, max_sentence_len - 1)])
next_input = tf.concat(next_input, axis=1)
if args.decoding == "seq2seq":
next_input = (next_input, predicted_eows)
finished = sentence_lens <= predicted_eows
else:
finished = sentence_lens <= time + 1
return outputs, states, next_input, finished
self.predictions, _, _ = tf.contrib.seq2seq.dynamic_decode(
DecoderPrediction(), maximum_iterations=3*tf.reduce_max(self.sentence_lens) + 10)
# Saver
self.saver = tf.train.Saver(max_to_keep=1)
if predict_only: return
# Training
global_step = tf.train.create_global_step()
self.training = tf.contrib.opt.LazyAdamOptimizer(learning_rate=self.learning_rate, beta2=args.beta_2).minimize(loss, global_step=global_step)
# Summaries
self.current_accuracy, self.update_accuracy = tf.metrics.accuracy(self.tags, self.predictions_training, weights=weights)
self.current_loss, self.update_loss = tf.metrics.mean(loss, weights=tf.reduce_sum(weights))
self.reset_metrics = tf.variables_initializer(tf.get_collection(tf.GraphKeys.METRIC_VARIABLES))
summary_writer = tf.contrib.summary.create_file_writer(args.logdir, flush_millis=10 * 1000)
self.summaries = {}
with summary_writer.as_default(), tf.contrib.summary.record_summaries_every_n_global_steps(100):
self.summaries["train"] = [tf.contrib.summary.scalar("train/loss", self.update_loss),
tf.contrib.summary.scalar("train/accuracy", self.update_accuracy)]
with summary_writer.as_default(), tf.contrib.summary.always_record_summaries():
for dataset in ["dev", "test"]:
self.summaries[dataset] = [tf.contrib.summary.scalar(dataset + "/loss", self.current_loss),
tf.contrib.summary.scalar(dataset + "/accuracy", self.current_accuracy)]
self.metrics = {}
self.metrics_summarize = {}
for metric in ["precision", "recall", "F1"]:
self.metrics[metric] = tf.placeholder(tf.float32, [], name=metric)
self.metrics_summarize[metric] = {}
with summary_writer.as_default(), tf.contrib.summary.always_record_summaries():
for dataset in ["dev", "test"]:
self.metrics_summarize[metric][dataset] = tf.contrib.summary.scalar(dataset + "/" + metric,
self.metrics[metric])
# Initialize variables
self.session.run(tf.global_variables_initializer())
with summary_writer.as_default():
tf.contrib.summary.initialize(session=self.session, graph=self.session.graph)
def train_epoch(self, train, learning_rate, args):
while not train.epoch_finished():
seq2seq = args.decoding == "seq2seq"
batch_dict = train.next_batch(args.batch_size, args.form_wes_model, args.lemma_wes_model, args.fasttext_model, including_charseqs=args.including_charseqs, seq2seq=seq2seq)
if args.word_dropout:
mask = np.random.binomial(n=1, p=args.word_dropout, size=batch_dict["word_ids"][train.FORMS].shape)
batch_dict["word_ids"][train.FORMS] = (1 - mask) * batch_dict["word_ids"][train.FORMS] + mask * train.factors[train.FORMS].words_map["<unk>"]
mask = np.random.binomial(n=1, p=args.word_dropout, size=batch_dict["word_ids"][train.LEMMAS].shape)
batch_dict["word_ids"][train.LEMMAS] = (1 - mask) * batch_dict["word_ids"][train.LEMMAS] + mask * train.factors[train.LEMMAS].words_map["<unk>"]
self.session.run(self.reset_metrics)
feeds = {self.sentence_lens: batch_dict["sentence_lens"],
self.form_ids: batch_dict["word_ids"][train.FORMS],
self.lemma_ids: batch_dict["word_ids"][train.LEMMAS],
self.pos_ids: batch_dict["word_ids"][train.POS],
self.tags: batch_dict["word_ids"][train.TAGS],
self.is_training: True,
self.learning_rate: learning_rate}
if args.form_wes_model: # pretrained form embeddings
feeds[self.pretrained_form_wes] = batch_dict["batch_form_pretrained_wes"]
if args.lemma_wes_model: # pretrained lemma embeddings
feeds[self.pretrained_lemma_wes] = batch_dict["batch_lemma_pretrained_wes"]
if args.fasttext_model: # fasttext form embeddings
feeds[self.pretrained_fasttext_wes] = batch_dict["batch_form_fasttext_wes"]
if args.bert_embeddings_train: # BERT embeddings
feeds[self.pretrained_bert_wes] = batch_dict["batch_bert_wes"]
if args.flair_train: # flair embeddings
feeds[self.pretrained_flair_wes] = batch_dict["batch_flair_wes"]
if args.elmo_train: # elmo embeddings
feeds[self.pretrained_elmo_wes] = batch_dict["batch_elmo_wes"]
if args.including_charseqs: # character-level embeddings
feeds[self.form_charseqs] = batch_dict["batch_charseqs"][train.FORMS]
feeds[self.form_charseq_lens] = batch_dict["batch_charseq_lens"][train.FORMS]
feeds[self.form_charseq_ids] = batch_dict["batch_charseq_ids"][train.FORMS]
feeds[self.lemma_charseqs] = batch_dict["batch_charseqs"][train.LEMMAS]
feeds[self.lemma_charseq_lens] = batch_dict["batch_charseq_lens"][train.LEMMAS]
feeds[self.lemma_charseq_ids] = batch_dict["batch_charseq_ids"][train.LEMMAS]
self.session.run([self.training, self.summaries["train"]], feeds)
def evaluate(self, dataset_name, dataset, args):
with open("{}/{}_system_predictions.conll".format(args.logdir, dataset_name), "w", encoding="utf-8") as prediction_file:
self.predict(dataset_name, dataset, args, prediction_file, evaluating=True)
f1 = 0.0
if args.corpus in ["CoNLL_en", "CoNLL_de", "CoNLL_nl", "CoNLL_es"]:
os.system("cd {} && ../../run_conlleval.sh {} {} {}_system_predictions.conll".format(args.logdir, dataset_name, args.__dict__[dataset_name + "_data"], dataset_name))
with open("{}/{}.eval".format(args.logdir,dataset_name), "r", encoding="utf-8") as result_file:
for line in result_file:
line = line.strip("\n")
if line.startswith("accuracy:"):
f1 = float(line.split()[-1])
self.session.run(self.metrics_summarize["F1"][dataset_name], {self.metrics["F1"]: f1})
return f1
elif args.corpus in [ "ACE2004", "ACE2005", "GENIA" ]: # nested named entities evaluation
os.system("cd {} && ../../run_eval_nested.sh {} {}".format(args.logdir, dataset_name, os.path.dirname(args.__dict__[dataset_name + "_data"])))
with open("{}/{}.eval".format(args.logdir,dataset_name), "r", encoding="utf-8") as result_file:
for line in result_file:
line = line.strip("\n")
if line.startswith("Recall:"):
recall = float(line.split(" ")[1])
if line.startswith("Precision:"):
precision = float(line.split(" ")[1])
if line.startswith("F1:"):
f1 = float(line.split(" ")[1])
for metric, value in [["precision", precision], ["recall", recall], ["F1", f1]]:
self.session.run(self.metrics_summarize[metric][dataset_name], {self.metrics[metric]: value})
return f1
else:
raise ValueError("Unknown corpus {}".format(args.corpus))
def predict(self, dataset_name, dataset, args, prediction_file, evaluating=False):
if evaluating:
self.session.run(self.reset_metrics)
tags = []
while not dataset.epoch_finished():
seq2seq = args.decoding == "seq2seq"
batch_dict = dataset.next_batch(args.batch_size, args.form_wes_model, args.lemma_wes_model, args.fasttext_model, args.including_charseqs, seq2seq=seq2seq)
targets = [self.predictions]
feeds = {self.sentence_lens: batch_dict["sentence_lens"],
self.form_ids: batch_dict["word_ids"][dataset.FORMS],
self.lemma_ids: batch_dict["word_ids"][train.LEMMAS],
self.pos_ids: batch_dict["word_ids"][train.POS],
self.is_training: False}
if evaluating:
targets.extend([self.update_accuracy, self.update_loss])
feeds[self.tags] = batch_dict["word_ids"][dataset.TAGS]
if args.form_wes_model: # pretrained form embeddings
feeds[self.pretrained_form_wes] = batch_dict["batch_form_pretrained_wes"]
if args.lemma_wes_model: # pretrained lemma embeddings
feeds[self.pretrained_lemma_wes] = batch_dict["batch_lemma_pretrained_wes"]
if args.fasttext_model: # fasttext form embeddings
feeds[self.pretrained_fasttext_wes] = batch_dict["batch_form_fasttext_wes"]
if args.bert_embeddings_dev or args.bert_embeddings_test: # BERT embeddings
feeds[self.pretrained_bert_wes] = batch_dict["batch_bert_wes"]
if args.flair_dev or args.flair_test: # flair embeddings
feeds[self.pretrained_flair_wes] = batch_dict["batch_flair_wes"]
if args.elmo_dev or args.elmo_test: # elmo embeddings
feeds[self.pretrained_elmo_wes] = batch_dict["batch_elmo_wes"]
if args.including_charseqs: # character-level embeddings
feeds[self.form_charseqs] = batch_dict["batch_charseqs"][dataset.FORMS]
feeds[self.form_charseq_lens] = batch_dict["batch_charseq_lens"][dataset.FORMS]
feeds[self.form_charseq_ids] = batch_dict["batch_charseq_ids"][dataset.FORMS]
feeds[self.lemma_charseqs] = batch_dict["batch_charseqs"][dataset.LEMMAS]
feeds[self.lemma_charseq_lens] = batch_dict["batch_charseq_lens"][dataset.LEMMAS]
feeds[self.lemma_charseq_ids] = batch_dict["batch_charseq_ids"][dataset.LEMMAS]
tags.extend(self.session.run(targets, feeds)[0])
if evaluating:
self.session.run([self.current_accuracy, self.summaries[dataset_name]])
forms = dataset.factors[dataset.FORMS].strings
for s in range(len(forms)):
j = 0
for i in range(len(forms[s])):
if args.decoding == "seq2seq": # collect all tags until <eow>
labels = []
while j < len(tags[s]) and dataset.factors[dataset.TAGS].words[tags[s][j]] != "<eow>":
labels.append(dataset.factors[dataset.TAGS].words[tags[s][j]])
j += 1
j += 1 # skip the "<eow>"
print("{} _ _ {}".format(forms[s][i], "|".join(labels)), file=prediction_file)
else:
print("{} _ _ {}".format(forms[s][i], dataset.factors[dataset.TAGS].words[tags[s][i]]), file=prediction_file)
print("", file=prediction_file)
if __name__ == "__main__":
import argparse
import datetime
import os
import re
# Fix random seed
np.random.seed(42)
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=8, type=int, help="Batch size.")
parser.add_argument("--bert_embeddings_dev", default="./data/teprorary/dev_vectors.txt", type=str, help="Pretrained BERT embeddings for dev data.")
parser.add_argument("--bert_embeddings_test", default="./data/teprorary/test_vectors.txt", type=str, help="Pretrained BERT embeddings for test data.")
parser.add_argument("--bert_embeddings_train", default="./data/teprorary/train_vectors.txt", type=str, help="Pretrained BERT embeddings for train data.")
parser.add_argument("--beta_2", default=0.98, type=float, help="Beta 2.")
parser.add_argument("--corpus", default="CoNLL_en", type=str, help="CoNLL_en|CoNLL_de|CoNLL_nl|CoNLL_es|ACE2004|ACE2005|GENIA.")
parser.add_argument("--cle_dim", default=128, type=int, help="Character-level embedding dimension.")
parser.add_argument("--decoding", default="CRF", type=str, help="Decoding: [CRF|ME|LSTM|seq2seq].")
parser.add_argument("--dev_data", default="./data/teprorary/dev.txt", type=str, help="Dev data.")
parser.add_argument("--logpath", default="./logs/simple/paper_simple_learning.csv", type=str, help="log")
parser.add_argument("--dropout", default=0.5, type=float, help="Dropout rate.")
parser.add_argument("--elmo_dev", default=None, type=str, help="ELMo dev embeddings.")
parser.add_argument("--elmo_test", default=None, type=str, help="ELMo test embeddings.")
parser.add_argument("--elmo_train", default=None, type=str, help="ELMo train embeddings.")
parser.add_argument("--epochs", default="1:1e-3", type=str, help="Epochs and learning rates.")
parser.add_argument("--fasttext_model", default=None, type=str, help="Fasttext subwords.")
parser.add_argument("--flair_dev", default=None, type=str, help="Flair dev embeddings.")
parser.add_argument("--flair_test", default=None, type=str, help="Flair test embeddings.")
parser.add_argument("--flair_train", default=None, type=str, help="Flair train embeddings.")
parser.add_argument("--form_wes_model", default=None, type=str, help="Pretrained form WEs.")
parser.add_argument("--label_smoothing", default=0, type=float, help="Label smoothing.")
parser.add_argument("--lemma_wes_model", default=None, type=str, help="Pretrained lemma WEs.")
parser.add_argument("--max_sentences", default=None, type=int, help="Number of training sentences (for debugging).")
parser.add_argument("--name", default=None, type=str, help="Experiment name.")
parser.add_argument("--predict", default=None, type=str, help="Predict using the passed model.")
parser.add_argument("--rnn_cell", default="LSTM", type=str, help="RNN cell type.")
parser.add_argument("--rnn_cell_dim", default=256, type=int, help="RNN cell dimension.")
parser.add_argument("--rnn_layers", default=1, type=int, help="Number of hidden layers.")
parser.add_argument("--test_data", default="./data/teprorary/test.txt", type=str, help="Test data.")
parser.add_argument("--train_data", default="./data/teprorary/train.txt", type=str, help="Training data.")
parser.add_argument("--threads", default=4, type=int, help="Maximum number of threads to use.")
parser.add_argument("--we_dim", default=256, type=int, help="Word embedding dimension.")
parser.add_argument("--word_dropout", default=0.2, type=float, help="Word dropout.")
args = parser.parse_args()
if args.predict:
# Load saved options from the model
with open("{}/options.json".format(args.predict), mode="r") as options_file:
args = argparse.Namespace(**json.load(options_file))
parser.parse_args(namespace=args)
else:
# Create logdir name
logargs = dict(vars(args).items())
logargs["form_wes_model"] = 1 if args.form_wes_model else 0
logargs["lemma_wes_model"] = 1 if args.lemma_wes_model else 0
del logargs["bert_embeddings_dev"]
del logargs["bert_embeddings_test"]
del logargs["bert_embeddings_train"]
del logargs["beta_2"]
del logargs["cle_dim"]
del logargs["dev_data"]
del logargs["dropout"]
del logargs["elmo_dev"]
del logargs["elmo_test"]
del logargs["elmo_train"]
del logargs["flair_dev"]
del logargs["flair_test"]
del logargs["flair_train"]
del logargs["label_smoothing"]
del logargs["max_sentences"]
del logargs["rnn_cell_dim"]
del logargs["test_data"]
del logargs["threads"]
del logargs["train_data"]
del logargs["we_dim"]
del logargs["word_dropout"]
logargs["bert_embeddings"] = 1 if args.bert_embeddings_train else 0
logargs["flair_embeddings"] = 1 if args.flair_train else 0
logargs["elmo_embeddings"] = 1 if args.elmo_train else 0
args.logdir = "logs/{}-{}-{}".format(
os.path.basename(__file__),
datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S"),
",".join(("{}={}".format(re.sub("(.)[^_]*_?", r"\1", key), re.sub("^.*/", "", value) if type(value) == str else value)
for key, value in sorted(logargs.items())))
)
if not os.path.exists("logs"): os.mkdir("logs") # TF 1.6 will do this by itself
if not os.path.exists(args.logdir): os.mkdir(args.logdir)
# Dump passed options to allow future prediction.
with open("{}/options.json".format(args.logdir), mode="w") as options_file:
json.dump(vars(args), options_file, sort_keys=True)
# Postprocess args
args.epochs = [(int(epochs), float(lr)) for epochs, lr in (epochs_lr.split(":") for epochs_lr in args.epochs.split(","))]
# Load the data
seq2seq = args.decoding == "seq2seq"
train = morpho_dataset.MorphoDataset(args.train_data, max_sentences=args.max_sentences, bert_embeddings_filename=args.bert_embeddings_train)
if args.dev_data:
dev = morpho_dataset.MorphoDataset(args.dev_data, train=train, shuffle_batches=False, bert_embeddings_filename=args.bert_embeddings_dev)
test = morpho_dataset.MorphoDataset(args.test_data, train=train, shuffle_batches=False, bert_embeddings_filename=args.bert_embeddings_test)
# Load pretrained form embeddings
if args.form_wes_model:
args.form_wes_model = word2vec.load(args.form_wes_model)
if args.lemma_wes_model:
args.lemma_wes_model = word2vec.load(args.lemma_wes_model)
# Load fasttext subwords embeddings
if args.fasttext_model:
args.fasttext_model = fasttext.load_model(args.fasttext_model)
# Character-level embeddings
args.including_charseqs = (args.cle_dim > 0)
# Construct the network
network = Network(threads=args.threads)
network.construct(args,
num_forms=len(train.factors[train.FORMS].words),
num_form_chars=len(train.factors[train.FORMS].alphabet),
num_lemmas=len(train.factors[train.LEMMAS].words),
num_lemma_chars=len(train.factors[train.LEMMAS].alphabet),
num_pos=len(train.factors[train.POS].words),
pretrained_form_we_dim=args.form_wes_model.vectors.shape[1] if args.form_wes_model else 0,
pretrained_lemma_we_dim=args.lemma_wes_model.vectors.shape[1] if args.lemma_wes_model else 0,
pretrained_fasttext_dim=args.fasttext_model.get_dimension() if args.fasttext_model else 0,
num_tags=len(train.factors[train.TAGS].words),
tag_bos=train.factors[train.TAGS].words_map["<bos>"],
tag_eow=train.factors[train.TAGS].words_map["<eow>"],
pretrained_bert_dim=train.bert_embeddings_dim(),
pretrained_flair_dim=train.flair_embeddings_dim(),
pretrained_elmo_dim=train.elmo_embeddings_dim(),
predict_only=args.predict)
model_config = ModelConfig()
if args.predict:
network.saver.restore(network.session, "{}/model".format(args.predict.rstrip("/")))
print("Predicting test data", file=sys.stderr)
network.predict("test", test, args, sys.stdout, evaluating=False)
else:
# Train
keep_max, best_epoch,epoch = 0, 0, 0
f1s = [-1]
for epochs, learning_rate in args.epochs:
while keep_max < model_config.stop_criteria_steps:
epoch+=1
network.train_epoch(train, learning_rate, args)
dev_score = 0
if args.dev_data:
dev_score = network.evaluate("dev", dev, args)
print("epoch {} devf1 {}".format(epoch, dev_score))
keep_max += 1
if max(f1s) < dev_score:
keep_max = 0
best_epoch = epoch
network.saver.save(network.session, "{}/model".format(args.logdir), write_meta_graph=False)
f1s.append(dev_score)
stat_in_file(args.logpath, [" EndEpoch", epoch, "f1", dev_score,
"memory", model_config.p.memory_info().rss/1024/1024])
# Save network
network.saver.restore(network.session, "{}/model".format(args.logdir))
test_score = network.evaluate("test", test, args)
print("devf1 {}".format(test_score))
stat_in_file(args.logpath,
["result", "devf1", test_score])
shutil.rmtree(args.logdir)