Textual Inversionです。実装に当たっては https://github.com/huggingface/diffusers/tree/main/examples/textual_inversion を大いに参考にしました。
学習したモデルはWeb UIでもそのまま使えます。
なお恐らくSD2.xにも対応していますが現時点では未テストです。
train_textual_inversion.py
を用います。
データの準備については train_network.py
と全く同じですので、そちらのドキュメントを参照してください。
以下はコマンドラインの例です(DreamBooth手法)。
accelerate launch --num_cpu_threads_per_process 1 train_textual_inversion.py
--pretrained_model_name_or_path=..\models\model.ckpt
--train_data_dir=..\data\db\char1 --output_dir=..\ti_train1
--resolution=448,640 --train_batch_size=1 --learning_rate=1e-4
--max_train_steps=400 --use_8bit_adam --xformers --mixed_precision=fp16
--save_every_n_epochs=1 --save_model_as=safetensors --clip_skip=2 --seed=42 --color_aug
--token_string=mychar4 --init_word=cute --num_vectors_per_token=4
--token_string
に学習時のトークン文字列を指定します。学習時のプロンプトは、この文字列を含むようにしてください(token_stringがmychar4なら、mychar4 1girl
など)。プロンプトのこの文字列の部分が、Textual Inversionの新しいtokenに置換されて学習されます。
プロンプトにトークン文字列が含まれているかどうかは、--debug_dataset
で置換後のtoken idが表示されますので、以下のように 49408
以降のtokenが存在するかどうかで確認できます。
input ids: tensor([[49406, 49408, 49409, 49410, 49411, 49412, 49413, 49414, 49415, 49407,
49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407,
49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407,
49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407,
49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407,
49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407,
49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407, 49407,
49407, 49407, 49407, 49407, 49407, 49407, 49407]])
tokenizerがすでに持っている単語(一般的な単語)は使用できません。
--init_word
にembeddingsを初期化するときのコピー元トークンの文字列を指定します。学ばせたい概念が近いものを選ぶとよいようです。二つ以上のトークンになる文字列は指定できません。
--num_vectors_per_token
にいくつのトークンをこの学習で使うかを指定します。多いほうが表現力が増しますが、その分多くのトークンを消費します。たとえばnum_vectors_per_token=8の場合、指定したトークン文字列は(一般的なプロンプトの77トークン制限のうち)8トークンを消費します。
その他、以下のオプションが指定できます。
- --weights
- 学習前に学習済みのembeddingsを読み込み、そこから追加で学習します。
- --use_object_template
- キャプションではなく既定の物体用テンプレート文字列(
a photo of a {}
など)で学習します。公式実装と同じになります。キャプションは無視されます。
- キャプションではなく既定の物体用テンプレート文字列(
- --use_style_template
- キャプションではなく既定のスタイル用テンプレート文字列で学習します(
a painting in the style of {}
など)。公式実装と同じになります。キャプションは無視されます。
- キャプションではなく既定のスタイル用テンプレート文字列で学習します(
gen_img_diffusers.pyに、--textual_inversion_embeddings
オプションで学習したembeddingsファイルを指定してください(複数可)。プロンプトでembeddingsファイルのファイル名(拡張子を除く)を使うと、そのembeddingsが適用されます。