-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-gan.py
153 lines (125 loc) · 5.86 KB
/
train-gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import gc
import torch
import numpy as np
from tensorboardX import SummaryWriter
from games import race_game as game
from games import RaceConfig, predefined_tracks
from agents import PPOAgent
from generators import RaceTrackGenerator
from discriminators import RaceWinnerDiscriminator
from policies import LSTMPolicy
from utils import find_next_run_dir, find_latest, one_hot
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', default=32, type=int)
parser.add_argument('--resume-path', default=None, type=str) # default='learned'
parser.add_argument('--trials', default=6, type=int,
help='Number of times we simulate game to determine a winner.')
parser.add_argument('--agents', default='learned', type=str,
help='Path to trained agents.')
parser.add_argument('--latent', default=16, type=int,
help='Dimensionality of latent vector.')
parser.add_argument('--generator-batch-size', '-gbs', default=64, type=int)
parser.add_argument('--generator-train-steps', '-gts', default=1, type=int)
parser.add_argument('--generator-beta', '-b', default=0., type=float,
help='Auxiliary loss scale.')
args = parser.parse_args()
def main():
run_path = args.resume_path if args.resume_path else find_next_run_dir('experiments')
print(f'Running experiment {run_path}')
episode = 0
finish_mean = 0.
# create agents with LSTM policy network
agents = [PPOAgent(game.actions,
LSTMPolicy(game.state_shape()[0], game.actions),
lr=5e-5, discount=0.99, eps=0.1)
for _ in range(game.num_players)]
# load agents if resuming
for i, a in enumerate(agents):
path = find_latest(args.agents, f'agent_{i}_*.pt')
print(f'Resuming agent {i} from path "{path}"')
a.load(path)
# create discriminator
discriminator = RaceWinnerDiscriminator(game.num_players, lr=1e-5, betas=(0.5, 0.9))
# create generator
generator = RaceTrackGenerator(args.latent, lr=1e-5, betas=(0.3, 0.9))
if args.resume_path:
path = find_latest(args.resume_path, 'discriminator_[0-9]*.pt')
print(f'Resuming discriminator from path "{path}"')
discriminator.load(path)
path = find_latest(args.resume_path, 'generator_[0-9]*.pt')
print(f'Resuming generator from path "{path}"')
generator.load(path)
path = find_latest(args.resume_path, 'params_*.pt')
print(f'Resuming params from path "{path}"')
params = torch.load(path)
episode = params['episode']
finish_mean = params['finish_mean']
summary_writer = SummaryWriter(os.path.join(run_path, 'summary'), purge_step=episode)
result = {}
while True:
if episode % 30 == 0:
print(f'-- episode {episode}')
# -- training discriminator
boards = generator.generate(RaceConfig.max_segments, args.batch_size).detach()
boards = torch.cat((boards, predefined_tracks()), dim=0)
boards = torch.cat((boards, -boards), dim=0) # mirror levels to train more robust discriminator
rboards = boards.repeat(args.trials, 1, 1)
states, any_valid = game.reset(rboards)
game.record(0)
# run agents to find who wins
with torch.no_grad():
while any_valid and not game.finished():
actions = torch.stack([a.act(s, training=False) for a, s in zip(agents, states)], dim=0)
states, rewards = game.step(actions)
for a in agents:
a.reset()
cur_mean = game.finishes.float().mean().item()
finish_mean = 0.9 * finish_mean + 0.1 * cur_mean
result['game/finishes'] = cur_mean
# discriminator calculate loss and perform backward pass
winners = one_hot(game.winners() + 1, num_classes=game.num_players + 1)
winners = winners.view(args.trials, -1, *winners.shape[1:]).float().mean(0)
dloss, dacc = discriminator.train(boards.detach(), winners)
result['discriminator/loss'] = dloss
result['discriminator/accuracy'] = dacc
# -- train generator
for _ in range(args.generator_train_steps):
generated = generator.generate(RaceConfig.max_segments, args.generator_batch_size)
pred_winners = discriminator.forward(generated)
gloss, galoss = generator.train(pred_winners, args.generator_beta)
result['generator/loss'] = gloss
if galoss:
result['generator/aux_loss'] = galoss
# log data
for p in range(game.num_players):
result[f'game/win_rates/player_{p}'] = winners[:, p + 1].mean().item()
result['game/invalid'] = winners[:, 0].mean().item()
# save episode
if episode % 100 == 0:
game.record_episode(os.path.join(run_path, 'videos', f'episode_{episode}'))
# save boards as images in tensorboard
for i, img in enumerate(game.tracks_images(top_n=args.batch_size)):
result[f'game/boards_{i}'] = np.transpose(img, axes=(2, 0, 1))
# save networks
if episode % 500 == 0:
discriminator.save(os.path.join(run_path, f'discriminator_{episode}.pt'))
generator.save(os.path.join(run_path, f'generator_{episode}.pt'))
torch.save({
'episode': episode,
'finish_mean': finish_mean
}, os.path.join(run_path, f'params_{episode}.pt'))
# save data to tensorboard
for tag, data in result.items():
if isinstance(data, np.ndarray):
summary_writer.add_image(tag, data, global_step=episode)
else:
summary_writer.add_scalar(tag, data, global_step=episode)
# -----
if episode % 1000 == 0:
gc.collect()
result.clear()
episode += 1
if __name__ == '__main__':
main()