-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
94 lines (84 loc) · 3.25 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import torchvision.transforms.functional as F
from PIL import Image
import os
import glob
import numpy as np
import cv2
import random
def random_horizontal_flip(imgs):
if random.random() < 0.3:
for i in range(len(imgs)):
imgs[i] = imgs[i].transpose(Image.FLIP_LEFT_RIGHT)
return imgs
def random_rotate(imgs):
if random.random() < 0.3:
max_angle = 10
angle = random.random() * 2 * max_angle - max_angle
# print(angle)
for i in range(len(imgs)):
img = np.array(imgs[i])
w, h = img.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1)
img_rotation = cv2.warpAffine(img, rotation_matrix, (h, w))
imgs[i] =Image.fromarray(img_rotation)
return imgs
class Dataset(torch.utils.data.Dataset):
def __init__(self, text_path, mask_path=None,gt_path=None, training=True, mask_reverse=False):
super(Dataset, self).__init__()
self.training = training
self.has_gt = gt_path
if self.has_gt:
self.gt = self.load_list(gt_path)
self.has_mask = mask_path
if self.has_mask:
self.mask = self.load_list(mask_path)
self.text = self.load_list(text_path)
self.mask_reverse = mask_reverse
def __len__(self):
return len(self.text)
def __getitem__(self, index):
try:
item = self.load_item(index)
except:
print('loading error: ' + self.text[index])
item = self.load_item(0)
return item
def load_item(self, index):
if self.training:
gt = Image.open(self.gt[index]).convert('RGB')
mask = Image.open(self.mask[index]).convert('L')
text = Image.open(self.text[index]).convert('RGB')
all_input = [text, mask, gt]
all_input = random_horizontal_flip(all_input)
all_input = random_rotate(all_input)
text = all_input[0]
mask = all_input[1]
gt = all_input[2]
if self.mask_reverse:
return self.to_tensor(gt),1-self.to_tensor(mask) ,self.to_tensor(text)
else:
return self.to_tensor(gt), self.to_tensor(mask), self.to_tensor(text)
else:
gt = Image.open(self.gt[index]).convert('RGB')
if self.has_mask:
mask = Image.open(self.mask[index]).convert('L')
text = Image.open(self.text[index]).convert('RGB')
name = self.text[index].split('/')[-1][:-4]
if self.has_mask:
if self.mask_reverse:
return self.to_tensor(gt), 1 - self.to_tensor(mask), self.to_tensor(text),name
else:
return self.to_tensor(gt), self.to_tensor(mask), self.to_tensor(text), name
else:
return self.to_tensor(gt), self.to_tensor(text),name
def to_tensor(self, img):
img_t = F.to_tensor(img).float()
return img_t
def load_list(self, path):
if isinstance(path, str):
if os.path.isdir(path):
path = list(glob.glob(path + '/*.jpg')) + list(glob.glob(path + '/*.png'))
path.sort()
return path
return []