-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
45 lines (42 loc) · 2.22 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import os
from model import FETNetModel
from dataset import Dataset
from torch.utils.data import DataLoader
import torch
def run():
parser = argparse.ArgumentParser()
parser.add_argument('--gt_root', type=str,default='')
parser.add_argument('--mask_root', type=str,default='')
parser.add_argument('--text_root', type=str,default='')
parser.add_argument('--model_save_path', type=str, default='checkpoint')
parser.add_argument('--result_save_path', type=str, default='results')
parser.add_argument('--num_epochs', type=int, default=500)
parser.add_argument('--model_path_g', type=str, default="checkpoint/g_enstext.pth")
parser.add_argument('--model_path_d', type=str, default="checkpoint/xxx.pth")
parser.add_argument('--batch_size', type=int, default=6)
parser.add_argument('--n_threads', type=int, default=3)
parser.add_argument('--finetune', action='store_true')
parser.add_argument('--test', action='store_true')
parser.add_argument('--gpu_id', type=str, default="0")
args = parser.parse_args()
torch.backends.cudnn.benchmark = True
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
model = FETNetModel()
if args.test:
model.initialize_model(args.model_path_g, args.model_path_d,False)
total = sum([param.nelement() for param in model.G.parameters()])
print("Number of G'parameter: %.2fM" % (total / 1e6))
total2 = sum([param.nelement() for param in model.D.parameters()])
print("Number of D'parameter: %.2fM" % (total2 / 1e6))
print("Number of parameter: %.2fM" % ((total+total2) / 1e6))
model.cuda()
dataloader = DataLoader(Dataset(args.text_root, args.mask_root, args.gt_root,mask_reverse = True, training=False))
model.test(dataloader, args.result_save_path)
else:
model.initialize_model(args.model_path_g,args.model_path_d, True)
model.cuda()
dataloader = DataLoader(Dataset(args.text_root, args.mask_root, args.gt_root,mask_reverse = True), batch_size = args.batch_size, shuffle = True, num_workers = args.n_threads,drop_last=True,pin_memory=True)
model.train(dataloader, args.model_save_path, args.finetune, args.num_epochs)
if __name__ == '__main__':
run()