-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathevaluation.py
121 lines (100 loc) · 3.74 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import sys
import time
from typing import Any, Dict, List, Tuple, Union
from datetime import datetime
import argparse
import numpy as np
import faulthandler
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from loader import Loader
from utils.utils import AverageMeter, AverageMeterForDict, str2bool
def parse_arguments() -> Any:
"""Arguments for running the baseline.
Returns:
parsed arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument("--mode",
default="train",
type=str,
help="Mode, train/val/test")
parser.add_argument("--features_dir",
required=True,
default="",
type=str,
help="path to the file which has features.")
parser.add_argument("--obs_len",
default=20,
type=int,
help="Observed length of the trajectory")
parser.add_argument("--pred_len",
default=30,
type=int,
help="Prediction Horizon")
parser.add_argument("--val_batch_size",
type=int,
default=512,
help="Val batch size")
parser.add_argument("--model",
default="dsp",
type=str,
help="Name of model")
parser.add_argument("--loss",
default="dsp",
type=str,
help="Type of loss function")
parser.add_argument("--data_aug",
action="store_true",
help="Enable data augmentation")
parser.add_argument("--use_cuda",
type=bool,
default=True,
help="Use CUDA for acceleration")
parser.add_argument("--adv_cfg_path",
required=True,
default="",
type=str)
parser.add_argument("--model_path",
required=True,
type=str,
help="path to the saved model")
return parser.parse_args()
def main():
args = parse_arguments()
print('Args: ', args)
faulthandler.enable()
if args.use_cuda and torch.cuda.is_available():
device = torch.device("cuda", 0)
else:
device = torch.device('cpu')
if not args.model_path.endswith(".tar"):
assert False, "Model path error - '{}'".format(args.model_path)
loader = Loader(args, device, is_ddp=False)
print('[Resume]Loading state_dict from {}'.format(args.model_path))
loader.set_resmue(args.model_path)
(train_set, val_set), net, _, _, evaluator = loader.load()
dl_val = DataLoader(val_set,
batch_size=args.val_batch_size,
shuffle=False,
num_workers=8,
collate_fn=val_set.collate_fn,
drop_last=False,
pin_memory=True)
net.eval()
with torch.no_grad():
# * Validation
val_start = time.time()
val_eval_meter = AverageMeterForDict()
for i, data in enumerate(tqdm(dl_val)):
out = net(data)
post_out = net.post_process(out)
eval_out = evaluator.evaluate(post_out, data)
val_eval_meter.update(eval_out, n=data['BATCH_SIZE'])
print('\nValidation set finish, cost {} secs'.format(time.time() - val_start))
print('-- ' + val_eval_meter.get_info())
print('\nExit...')
if __name__ == "__main__":
main()