-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathevaluation_ddp.py
164 lines (136 loc) · 5.49 KB
/
evaluation_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import sys
import time
from typing import Any, Dict, List, Tuple, Union
from datetime import datetime
import argparse
import numpy as np
import faulthandler
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from loader import Loader
from utils.logger import Logger
from utils.utils import AverageMeter, AverageMeterForDict, str2bool
def parse_arguments() -> Any:
"""Arguments for running the baseline.
Returns:
parsed arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument("--mode",
default="train",
type=str,
help="Mode, train/val/test")
parser.add_argument("--features_dir",
required=True,
default="",
type=str,
help="path to the file which has features."
)
parser.add_argument("--obs_len",
default=20,
type=int,
help="Observed length of the trajectory")
parser.add_argument("--pred_len",
default=30,
type=int,
help="Prediction Horizon")
parser.add_argument("--train_batch_size",
type=int,
default=512,
help="Training batch size")
parser.add_argument("--val_batch_size",
type=int,
default=512,
help="Val batch size")
parser.add_argument("--model",
default="dsp",
type=str,
help="Name of model")
parser.add_argument("--loss",
default="dsp",
type=str,
help="Type of loss function")
parser.add_argument("--data_aug",
action="store_true",
help="Enable data augmentation")
parser.add_argument("--use_cuda",
type=bool,
default=True,
help="Use CUDA for acceleration")
parser.add_argument("--adv_cfg_path",
required=True,
default="",
type=str)
parser.add_argument("--model_path",
required=True,
type=str,
help="path to the saved model")
parser.add_argument("--local_rank", default=-1) # for DDP
return parser.parse_args()
def distributed_concat(tensor):
output_tensors = [tensor.clone() for _ in range(dist.get_world_size())]
dist.all_gather(output_tensors, tensor)
concat = torch.cat(output_tensors, dim=0)
return concat
def distributed_mean(tensor):
output_tensors = [tensor.clone() for _ in range(dist.get_world_size())]
dist.all_gather(output_tensors, tensor)
concat = torch.stack(output_tensors, dim=0)
return concat.mean(0)
def main():
args = parse_arguments()
faulthandler.enable()
local_rank = int(args.local_rank)
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
device = torch.device("cuda", local_rank)
world_size = dist.get_world_size()
is_main = True if local_rank == 0 else False
# logger only for print
date_str = datetime.now().strftime("%Y%m%d-%H%M%S")
log_dir = "log/" + date_str
logger = Logger(date_str=date_str, enable=is_main, log_dir=log_dir,
enable_flags={'writer': False, 'mailbot': False})
loader = Loader(args, device, is_ddp=True, world_size=world_size, local_rank=local_rank)
logger.print('[Resume]Loading state_dict from {}'.format(args.model_path))
loader.set_resmue(args.model_path)
(_, val_set), net, _, _, evaluator = loader.load()
val_sampler = torch.utils.data.distributed.DistributedSampler(val_set)
dl_val = DataLoader(val_set,
batch_size=args.val_batch_size,
num_workers=16,
collate_fn=val_set.collate_fn,
drop_last=False,
sampler=val_sampler,
pin_memory=True)
net.eval()
with torch.no_grad():
# * Validation
dl_val.sampler.set_epoch(0)
val_start = time.time()
val_eval_meter = AverageMeterForDict()
for i, data in enumerate(tqdm(dl_val, disable=(not is_main))):
out = net(data)
post_out = net.module.post_process(out)
eval_out = evaluator.evaluate(post_out, data)
val_eval_meter.update(eval_out, n=data['BATCH_SIZE'])
# make eval results into a Tensor
eval_res = [elem.avg for k, elem in val_eval_meter.metrics.items()]
eval_res = torch.from_numpy(np.array(eval_res)).to(device)
val_eval_mean = distributed_mean(eval_res)
val_eval = dict()
for i, key in enumerate(list(val_eval_meter.metrics.keys())):
val_eval[key] = val_eval_mean[i].item()
val_eval_meter.reset()
val_eval_meter.update(val_eval)
dist.barrier() # sync
logger.print('\nValidation set finish, cost {} secs'.format(time.time() - val_start))
logger.print('-- ' + val_eval_meter.get_info())
dist.destroy_process_group()
logger.print('\nExit...')
if __name__ == "__main__":
main()