-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathvisualize.py
145 lines (124 loc) · 4.76 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import sys
import time
from typing import Any, Dict, List, Tuple, Union
from datetime import datetime
import argparse
from tqdm import tqdm
import numpy as np
import torch
from torch.utils.data import DataLoader
from loader import Loader
from utils.logger import Logger
from utils.utils import AverageMeterForDict
from visualizers.visualizer_dsp import VisualizerDsp
def parse_arguments() -> Any:
"""Arguments for running the baseline.
Returns:
parsed arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument("--mode",
default="val",
type=str,
help="Mode, train/val/test")
parser.add_argument("--features_dir",
required=True,
default="",
type=str,
help="path to the file which has features.")
parser.add_argument("--obs_len",
default=20,
type=int,
help="Observed length of the trajectory")
parser.add_argument("--pred_len",
default=30,
type=int,
help="Prediction Horizon")
parser.add_argument("--model",
default="dsp",
type=str,
help="Name of model")
parser.add_argument("--loss",
default="dsp",
type=str,
help="Type of loss function")
parser.add_argument("--data_aug",
action="store_true",
help="Enable data augmentation")
parser.add_argument("--use_cuda",
type=bool,
default=True,
help="Use CUDA for acceleration")
parser.add_argument("--adv_cfg_path",
required=True,
default="",
type=str)
parser.add_argument("--model_path",
required=True,
type=str,
help="path to the saved model")
parser.add_argument("--shuffle",
action="store_true",
help="Shuffle order")
parser.add_argument("--show_conditioned",
action="store_true",
help="Show missed sample only")
return parser.parse_args()
def main():
args = parse_arguments()
print('Args: ', args)
if args.use_cuda and torch.cuda.is_available():
device = torch.device("cuda", 0)
else:
device = torch.device('cpu')
date_str = datetime.now().strftime("%Y%m%d-%H%M%S")
if args.model == 'dsp':
vis = VisualizerDsp()
else:
assert False, "Unknown visualizer"
if not args.model_path.endswith(".tar"):
assert False, "Model path error - '{}'".format(args.model_path)
if args.mode != 'test':
loader = Loader(args, device, is_ddp=False)
print('[Resume]Loading state_dict from {}'.format(args.model_path))
loader.set_resmue(args.model_path)
(train_set, val_set), net, _, _, _ = loader.load()
net.eval()
dl_train = DataLoader(train_set,
batch_size=1,
shuffle=args.shuffle,
num_workers=0,
collate_fn=train_set.collate_fn,
drop_last=False)
dl_val = DataLoader(val_set,
batch_size=1,
shuffle=args.shuffle,
num_workers=0,
collate_fn=val_set.collate_fn,
drop_last=False)
with torch.no_grad():
for i, data in enumerate(tqdm(dl_val)):
out = net(data)
post_out = net.post_process(out)
vis.draw_once(post_out, data, show_map=True)
else:
# test
loader = Loader(args, device, is_ddp=False)
print('[Resume]Loading state_dict from {}'.format(args.model_path))
loader.set_resmue(args.model_path)
test_set, net, _, _, _ = loader.load()
net.eval()
dl_test = DataLoader(test_set,
batch_size=1,
num_workers=0,
shuffle=False,
collate_fn=test_set.collate_fn)
with torch.no_grad():
for i, data in enumerate(tqdm(dl_test)):
out = net(data)
post_out = net.post_process(out)
vis.draw_once(post_out, data, show_map=True, test_mode=True)
print('\nExit...')
if __name__ == "__main__":
main()