-
Notifications
You must be signed in to change notification settings - Fork 1
/
mlm_util.py
245 lines (218 loc) · 9.31 KB
/
mlm_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import evaluate
from typing import Optional
from collections.abc import Mapping
from dataclasses import dataclass, field
from transformers.data.data_collator import _torch_collate_batch
from transformers import TrainingArguments, DataCollatorForLanguageModeling
class MyDataCollator(DataCollatorForLanguageModeling):
def torch_call(self, examples):
# Handle dict or lists with proper padding and conversion to tensor.
if isinstance(examples[0], Mapping):
batch = self.tokenizer.pad(examples, return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of)
else:
batch = {
"input_ids": _torch_collate_batch(examples, self.tokenizer, pad_to_multiple_of=self.pad_to_multiple_of)
}
# If special token mask has been preprocessed, pop it from the dict.
if self.mlm:
batch["input_ids"], batch["labels"] = self.my_torch_mask_tokens(
batch["input_ids"], batch["labels"])
else:
labels = batch["input_ids"].clone()
if self.tokenizer.pad_token_id is not None:
labels[labels == self.tokenizer.pad_token_id] = -100
batch["labels"] = labels
return batch
def my_torch_mask_tokens(self, inputs, labels):
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
new_labels = inputs.clone()
mask_token_indices = inputs == self.tokenizer.mask_token_id
new_labels[~mask_token_indices] = -100
new_labels[mask_token_indices] = torch.LongTensor(labels)
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, new_labels
def get_metric_function():
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics
labels = labels.reshape(-1)
preds = preds.reshape(-1)
mask = labels != -100
labels = labels[mask]
preds = preds[mask]
# return format: {"accuracy": number}
return metric.compute(predictions=preds, references=labels)
return compute_metrics
def get_token2id_mapping(tokenizer):
token_list = ["before", "after", "[none]"]
token2id_mapping = {}
for token in token_list:
if tokenizer.tokenize(token) != tokenizer.tokenize(" " + token):
token = " " + token
token_id = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(token))
assert len(token_id) <= 2
token_id = token_id[-1]
token2id_mapping[token.strip()] = token_id
return token2id_mapping
def get_preprocess_function(data_args, tokenizer, logger, token2id_mapping):
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
padding = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(examples):
inputs, targets = [], []
for i in range(len(examples["e0"])):
text = examples["e0"][i] + " " + tokenizer.mask_token + " " + examples["e1"][i]
inputs.append(text)
targets.append(token2id_mapping[examples["label"][i]])
model_inputs = tokenizer(
inputs,
padding=padding,
truncation=True,
max_length=max_seq_length,
)
model_inputs["labels"] = targets
return model_inputs
return tokenize_function
@dataclass
class ExtendedTrainingArguments(TrainingArguments):
save_checkpoint: bool = field(default=False,
metadata={"help": "whether to save the fine-tuned model"})
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_num: Optional[int] = field(
default=5000,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=4,
metadata={"help": "The number of processes to use for the preprocessing."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`train_file` should be a csv, a json or a txt file.")
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`validation_file` should be a csv, a json or a txt file.")