forked from brannondorsey/GloVe-experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
word_arithmetic.py
111 lines (94 loc) · 3.46 KB
/
word_arithmetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import argparse, utils, sys, readline
from scipy.spatial.distance import cosine
def word_arithmetic(start_word, minus_words, plus_words, word_to_id, id_to_word, df, num_results=5):
'''Returns a word string that is the result of the vector arithmetic'''
try:
start_vec = df[word_to_id[start_word]]
minus_vecs = [df[word_to_id[minus_word]] for minus_word in minus_words]
plus_vecs = [df[word_to_id[plus_word]] for plus_word in plus_words]
except KeyError as err:
return err, None
result = start_vec
if minus_vecs:
for i, vec in enumerate(minus_vecs):
result = result - vec
if plus_vecs:
for i, vec in enumerate(plus_vecs):
result = result + vec
# result = start_vec - minus_vec + plus_vec
words = [start_word] + minus_words + plus_words
return None, find_nearest(words, result, id_to_word, df, num_results)
def find_nearest(words, vec, id_to_word, df, num_results, method='cosine'):
if method == 'cosine':
minim = [] # min, index
for i, v in enumerate(df):
# skip the base word, its usually the closest
if id_to_word[i] in words:
continue
dist = cosine(vec, v)
minim.append((dist, i))
minim = sorted(minim, key=lambda v: v[0])
# return list of (word, cosine distance) tuples
return [(id_to_word[minim[i][1]], minim[i][0]) for i in range(num_results)]
else:
raise Exception('{} is not an excepted method parameter'.format(method))
def parse_expression(expr):
split = expr.split()
start_word = split[0]
minus_words, plus_words = [], []
for i, token in enumerate(split[1:]):
if token == '+':
plus_words.append(split[i + 2])
elif token == '-':
minus_words.append(split[i + 2])
return start_word, minus_words, plus_words
def process(num_results):
inpt = input('> ')
if inpt == 'exit':
exit()
start_word, minus_words, plus_words = parse_expression(inpt)
err, results = word_arithmetic(start_word=start_word,
minus_words=minus_words,
plus_words=plus_words,
word_to_id=word_to_id,
id_to_word=id_to_word,
df=df,
num_results=num_results)
if results:
print()
for res in results:
print(res[0].ljust(15), ' {0:.2f}'.format(res[1]))
print()
else:
print('{} not found in the dataset.'.format(err), file=sys.stderr)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--vector_dim', '-d',
type=int,
choices=[50, 100, 200, 300],
default=100,
help='What vector GloVe vector depth to use '
'(default: 100).')
parser.add_argument('--num_words', '-n',
type=int,
default=10000,
help='The number of lines to read from the GloVe '
'vector file (default: 10000).')
parser.add_argument('--num_output', '-o',
type=int,
default=1,
help='The number of result words to display (default: 1)')
parser.add_argument('--glove_path', '-i',
default='data/glove',
help='GloVe vector file path (default: data/glove)')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
vector_file = args.glove_path + '/' + 'glove.6B.' + str(args.vector_dim) + 'd.txt'
if args.num_words > 400000:
print('--num_words must be equal to or less than 400,000. Exiting.')
exit(1)
df, labels_array = utils.build_word_vector_matrix(vector_file, args.num_words)
word_to_id, id_to_word = utils.get_label_dictionaries(labels_array)
while True:
process(args.num_output)